Please use this identifier to cite or link to this item:
Title: 乘積與合成圖形中多重著色的拓樸不變性
Other Titles: On Topological Invariants of the Multicolorings of the Product and Composition of Graphs
Authors: 吳森原
Issue Date: Jun-1982
Publisher: 國立臺灣師範大學研究發展處
Office of Research and Development
Abstract: Berge [3]在1976年,曾經發表一些有關多重著色問題的研究。在本文中,我們研究乘積與合成圖形的多重著色的性質。我們證明了若G是具有偶數個頂點的第一類圖形[5],則G的多重色彩指數與其色彩指數相同。我們並證明若G1,G2都是可以多重著色的圖形,則G1×G2與G1 [G2] 也都是可以多重著色。
Berge [3] has studied some properties of multicoloring in a graph. In this pqper, we study the multicoloring in the product and composition of graphs. We show that if G has even vertices with the first class [5] , then the multicoloring index of G is equal to the chromatic index of G. We also show that if G1 and G2 are both multicolorable, then G1 × G2 and G1[G2] are also multicolorable.
Other Identifiers: DE9A2733-A90A-3C86-2EE6-622719E57DCD
Appears in Collections:師大學報

Files in This Item:
File SizeFormat 
ntnulib_ja_L0801_0027_549.pdf178.81 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.