Please use this identifier to cite or link to this item: http://rportal.lib.ntnu.edu.tw:80/handle/77345300/11655
Title: Differential Item Functioning Analyses in Large-Scale Educational Surveys: Key Concepts and Modeling Approaches for Secondary Analysts
Other Titles: 大型教育調查研究中的差別試題功能:次級分析中的核心概念及建模方法
Authors: Xiao-Shu Zhu
Andre A. Rupp
ling Gao
Issue Date: Mar-2011
Publisher: 國立臺灣師範大學
National Taiwan Normal University
Abstract: 大型教育評量研究常採用多階段抽樣的設計( multi-stage sampling design) ,透過對母群體之抽樣單位進行分層以抽取受測者。此外,還會採用複雜題本設計( complex booklet design)的方式將題目組成多份測驗題本。在此情況下,欲確保公正測量出不同受測群體的能力,關鍵在於能夠有效偵測所採用的題目是否具差別試題功能(differential item functioning, DIF )。本文旨在介紹探討在大型教育評量複雜設計之下能用以偵測差別試題功能的建模方法,並應用六種可用於偵測DIF 的多階層廣義線性模式(hierarchical generalized linear models, HGLMs) ,再透過電腦模擬比較它們偵測DIF 的效力。接著叉將這些模式應用到國際數學與科學教育成就趨勢調查研究(TIMSS) 的實證數據上,藉以探測是否存在一致性的性別DIF ( uniform gender DIF) 。
Many educational surveys employ a multi-stage sampling design for students, which makes use of stratification and/or clustering of population units, as well as a complex booklet design for items from an item pool. In these surveys, the reliable detection of item bias or differential item functioning (DIF) across student groups is a key component for ensuring fair representations of different student groups. In this paper, we describe several modeling approaches that can be useful for detecting DIF in educational surveys. We illustrate the key ideas by investigating the performance of six hierarchical generalized linear models (HGLMs) using a small simulation study and by applying them to real data from the Trends in Mathematics and Science Study (TIMSS) study where we use them to investigate potential uniform gender DIF.
URI: http://rportal.lib.ntnu.edu.tw//handle/77345300/11655
Other Identifiers: 568BE118-F52A-99BE-6F73-435139726A3A
Appears in Collections:教育科學研究期刊

Files in This Item:
File SizeFormat 
ntnulib_ja_L0802_5601_091.pdf2.12 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.