利用微流體晶片捕捉微顆粒機制於生醫應用之探討

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

在環境監測以及重點照護的關鍵技術會包含生物樣本的培養以及測試。然而,傳統技術需要大型設備來完成,難以達到廣泛且靈活的運用。過去十年中,生物晶片結合電子、機械和生物等技術,可於不同環境條件下執行生物樣本的快速分析,諸多科學的發展促使生物晶片愈趨成熟。鑑於此,本研究會使用模擬設計的方法進行,並分析壓力場、速度場和相關流體行為之變化,藉以提出可能影響捕捉效率的原因。同時,將採用光微影技術製作該設計的結構,以液珠和高分子球進行微顆粒測試之機制分析,再利用癌症循環腫瘤細胞進行粒子測試實驗。在本研究結果認為會影響微流體晶片中,該捕捉效率原因會為微流阻影響移動路徑和負壓區域造成堆積現象。 實驗結果顯示在設計之U型結構對於在50 mm以下之微粒子,其捕捉效果不佳,微粒子會被高速流體導引向通過流。同時,實驗中發現在負壓區尺寸過大時,會使單一捕捉結構易捕捉到一顆以上微粒子,造成堆積效應。因此,本研究提出新型三角設計,使整體流場均勻化,微粒子可有效的填滿結構,且三角結構可以有效的降低負壓區,達到單一結構捕捉單一粒子的目的。本實驗分別以液珠(100± 15 mm)以及高分子微球(25 ±5 mm)進行測試,其結果顯示設計之三角和U型結構捕捉液珠效率較為相近,該捕捉率皆達95%。此外,在捕捉高分子微球之效率,則分別為9 %(U型結構)以及42.9 %(三角結構)。
For environmental monitoring and point of care (POC), the biological specimen culture and testing are an important technology. However, the requirement of space conditions for its high specification and heavy equipment is difficult for a wide range of flexible use. Over the past decade, the biochips combined with electronic, mechanical and biological technology that can perform a rapid analysis of biological samples under different environmental conditions. The aim of study is to design microfluidic system device with the simulation method for trapping channel structures in the microfluidic transportation system. Based on the fluid simulation results, the distribution of the pressure fields, velocity fields and its flow behaviors are obtained that can be useful to fabricate the suitable devices. It can be seen the reasons that probably affect the trapping efficiency such as the influence of mciroflow resistance on the moving path and the influence the accumulation phenomenon on negative pressure zone. The experimental simulation results show the trapping efficiency is not well when the microparticles (≦50 m) run through the U-type structures in the microfluidic device. Because of the high-speed flow, the microparticles are easily induced them to pass the design of structures. Simultaneously, the single capturing structure can easily capture over one microparticle to cause the accumulation phenomenon occurs at the higher negative pressure. Consequently, this study proposes new type design of triangular structures in order to make the uniform flow, fill in the structure with particles and reduce the negative pressure. And the single structure can achieve to capture and the single particle. The capture particles size including the droplet (100  15 m) and polymer microsphere (25  5 m) can be used in this study. The trapping efficiency of droplets for design of triangle and the U-shaped structures is close whose the capture rate is over 95%. Furthermore, thetrapping efficiency of polymer microspheres for triangular structured and U-type structured devices are 42.9% and 9%, respectively.

Description

Keywords

微流體晶片, 捕捉流道結構設計, 微顆粒, 腫瘤細胞, 微影技術, Microfluidic devices, Design of trapping microchannels, Microparticles, Tumor cells, Lithography process

Citation

Collections