Please use this identifier to cite or link to this item: http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/95645
Full metadata record
DC FieldValueLanguage
dc.contributor呂藝光zh_TW
dc.contributorLeu, Yih-Guangen_US
dc.contributor.author林宇恆zh_TW
dc.contributor.authorLin, Yu-Hengen_US
dc.date.accessioned2019-09-03T10:45:38Z-
dc.date.available2016-08-21
dc.date.available2019-09-03T10:45:38Z-
dc.date.issued2016
dc.identifierG060375010H
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=%22http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060375010H%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/95645-
dc.description.abstract本論文發展一以決策樹為基礎的氣溫與雨量之預測模型。由於傳統決策樹都是以區間化輸出為主,因此該預測模型將線性複迴歸模型整合至決策樹以達成數值化輸出。本論文利用該預測模型來預測領前1至7天的氣溫與雨量,並針對預測值給予一定信賴水準的信賴區間。為了說明此預測模型的效能,該預測模型與其他時間序列的預測方法進行比較,其中時間序列的預測方法包括自迴歸、移動平均法、自迴歸差分整合移動平均法。zh_TW
dc.description.abstractBased on decision tree, the purpose of this thesis is to develop a forecast model for temperature and rainfall. Because the traditional decision tree generates interval output, the forecast model integrates the multiple linear regression model into the decision tree in order to achieve the goal of numeric output. In this thesis, the seven days ahead temperature and rainfall are predicted by using the forecast model, and their confidence intervals are given at a confidence level. In order to demonstrate the effectiveness of the forecast model, we compare the forecast model with some different time series methods, such as autoregressive (AR), moving average(MA), autoregressive integrated moving average (ARIMA).en_US
dc.description.sponsorship電機工程學系zh_TW
dc.language中文
dc.subject決策樹zh_TW
dc.subject預測zh_TW
dc.subject線性複迴歸模型zh_TW
dc.subjectDecision Treeen_US
dc.subjectForecasten_US
dc.subjectMultiple linear regression modelen_US
dc.title決策樹結合複迴歸模型預測氣溫與雨量zh_TW
dc.titleDecision Tree Combined Multiple Linear Regression Model to Forecast Temperature and Rainfallen_US
Appears in Collections:學位論文

Files in This Item:
File SizeFormat 
060375010h01.pdf3.59 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.