Please use this identifier to cite or link to this item:
Title: Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control
Authors: 國立臺灣師範大學電機工程學系
C.-H. Wang
W.-Y. Wang
Issue Date: 5-Oct-1994
Abstract: A general methodology for constructing fuzzy membership functions via B-spline curve is proposed. By using the method of least-squares, we translate the empirical data into the form of the control points of B-spline curves to construct fuzzy membership functions. This unified form of fuzzy membership functions is called as B-spline membership functions (BMF's). By using the local control property of B-spline curve, the BMF's can be tuned locally during learning process. For the control of a model car through fuzzy-neural networks, it is shown that the local tuning of BMF's can indeed reduce the number of iterations tremendously
Other Identifiers: ntnulib_tp_E0604_02_092
Appears in Collections:教師著作

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.