Please use this identifier to cite or link to this item:
Title: 新聞情緒對下單積極度之影響
The Effect of News Sentiment on Order Aggressiveness
Authors: 蔡蒔銓
Tsai, Shih-Chaun
Wei, Ju-Yu
Keywords: 文字探勘
Text Mining
News sentiment
Order aggressiveness
Issue Date: 2020
Abstract: 隨著網路資訊普及,投資人能夠即時獲取財經新聞,並能對所獲取的資訊有 即時反應,因此,本研究以2014年4月至2015年12月,台灣上市公司之普通 股為樣本,透過文字探勘之方式,量化新聞詞語,計算新聞情緒,並將投資人分為外資、國內法人與自然人,探討新聞情緒對下單積極度之影響,實證結果顯示,自然人與國內法人有較快賣出股票之傾向,而外資則是看到壞消息,買入;看到好消息,賣出。
With the popularity of online information, investors can read financial news in real time and react to the news in real time. Therefore, use text mining to quantitative news words and calculate news sentiment for Taiwan listed companies of the common stock from April 2014 to December 2015. In addition, investors are divided into foreign investors, domestic institution investors, and retail investors. The empirical results show that retail investors and domestic institution investors tend to sell stocks more quickly. Moreover, foreign institution investors see good news, sell; see bad news, buy.
Other Identifiers: G060755010O
Appears in Collections:學位論文

Files in This Item:
File SizeFormat 
060755010o01.pdf1.83 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.