Please use this identifier to cite or link to this item: http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/104133
Full metadata record
DC FieldValueLanguage
dc.contributor王穎zh_TW
dc.contributorYing Wangen_US
dc.contributor.author黃書彥zh_TW
dc.contributor.authorShu-Yen Huangen_US
dc.date.accessioned2019-09-05T05:48:16Z-
dc.date.available2008-9-1
dc.date.available2019-09-05T05:48:16Z-
dc.date.issued2007
dc.identifierGN0693430252
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=%22http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0693430252%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/104133-
dc.description.abstract本研究於2005年針對台灣紫嘯鶇(Myiophoneus insularis)親鳥育雛期間發出的給食聲與警戒聲進行研究。在石碇樣區地共觀察了10對親鳥,並於雛鳥0-11日齡進行錄影,共記錄237小時,1267趟餵食。親鳥餵食前發出給食聲的頻度在雛鳥不同日齡間有顯著差異(P<0.0001):於雛鳥0-1日齡(73.04±29.35%)、2-3日齡(76.71±20.48%)、4-5日齡(67.49±26.88%),及6-7日齡(58.47±24.18%)之間無顯著差異,但顯著高於8-9日齡(23.24±12.15%)及10-11日齡(11.74±12.18%)。就親鳥性別而言,雄鳥發出給食聲頻度(53.36±30.29 %)大於雌鳥(41.73±33.17 %),但兩者未有顯著差異(P=0.0761)。就背景聲音對給食聲的影響而言,築於橋墩的巢(66±4.3 dB, n=5)大於築於房舍的巢(<50 dB ,n=5),較大的背景聲會影響雛鳥察覺親鳥回巢的能力。於雛鳥8-11日齡,築巢於橋墩的親鳥發出給食聲頻度為22.45±4.55%,顯著大於築巢於房舍者的10.84±4.79 %(P=0.009)。此外親鳥發出給食聲的下一趟餵食間隔為1140±525 秒,顯著長於未發出者的873±349 秒(P=0.0048),且帶回食物大於1嘴喙長的機會也較大,然未有顯著差異(P =0.0795)。以親鳥給食聲、溝通聲,以及藍鵲叫聲進行對本種雛鳥的回播實驗結果有顯著差異(P<0.0001)。雛鳥對於親鳥給食聲的乞食張嘴時間及乞食強度皆顯著大於親鳥溝通聲及藍鵲叫聲,因此本種雛鳥應具有正確辨別給食聲的能力。本種警戒聲可區分為三型:警戒聲Ⅰ-a音頻在4758-7040 Hz之間,主頻率為5930 Hz;警戒聲Ⅰ-b音頻在3239-6630 Hz之間,主頻率為5737 Hz;警戒聲Ⅱ音頻在2408-4851 Hz之間,主頻率為3668 Hz。親鳥於護巢時發出的警戒聲總次數,於雛鳥不同階段間有顯著差異(P=0.002)。於雛鳥早期,親鳥警戒聲次數較少,以高頻且頻域窄的為警戒聲Ⅰ-a為主;而雛鳥中期以後,親鳥警戒聲次數增多,以較低頻且頻域寬的警戒聲Ⅰ-b為主。而聲音最為粗啞的警戒聲Ⅱ只在雛鳥中期之後才會使用,並伴隨較強烈的護巢行為。以親鳥警戒聲Ⅰ-a、Ⅰ-b、Ⅱ進行對本種雛鳥的回播實驗結果顯示,雛鳥聽到回播後動作次數顯著較回播前低,表示三種聲音皆具有警告雛鳥的功能。zh_TW
dc.description.abstractThe parental feeding and the alarm call of Taiwan whistling thrush (Myiophoneus insularis)were investigated at Shrding Hsiang. The parental feeding call was studied via video recorder while the nestlings were 0-11 days old. Observations were conducted on 10 nests, total 162 hours and 1,525 feeding times. The frequency of the parental feeding was different between the nestling ages(P<0.0001). Both male and female called proportionally more at the early stage (0-1, 2-3, 4-5, 6-7 days old), and then significantly decreased when they were 8-9, and 10-11 days old. Male called rather more than female, but not significantly(P=0.0761). Parents spent significantly longer away from the nest immediately after uttering feeding call(P=0.0048),and tend to bring larger food(>1 bit). The background noise hindered the nestlings’ detection while parents arrived the nest. The background noise around the bridge(66±4.3 dB, n=5)was higher than the house(<50 dB ,n=5). Parents which nested in the bridge called more feeding call than in the house at the nestling’ 8-11 days old (P=0.009). The playback experiment revealed that nestlings begged significantly longer time and higher intensity to the parental feeding call than the parental social call and Urocissa caerulea call(begging time, P<0.0001; begging intensity P<0.0001), it might indicate that nestlings could discriminate the feeding call accurately. I recorded three types of the alarm call during parents nest defense. The frequency of the alarm callⅠ-a was between 4,758 to 7,040 Hz, and the average of the dominant frequency is 5,930 Hz. The frequency of the alarm callⅠ-b is between 3,239 to 6,630 Hz, and the average of the dominant frequency is 5,737 Hz. The frequency of the alarm call Ⅱ is between 2,408 to 4,851 Hz, and the average of the dominant frequency is 3,668 Hz. The number of the alarm call, per 3 min during parents nest defense, was different between the nestling stages(P<0.002). Parents called less at nestlings’ early stage(0-5 days old), and the type of the call was mainlyⅠ-a (highest frequency whistles call). At middle (6- 11days old)and late stage(12-17 days old), parents significantly called more, and the type of call was mainly Ⅰ-b (broadest frequency range call). Furthermore, the type Ⅱ(lowest frequency call)alarm call was recorded only at middle and late stage, and always accompanied with stronger nest defense. In the playback experiment, it revealed that nestlings moved much more less while playing back the alarm call (Ⅰ-a, P=0.018; Ⅰ-b, P=0.017; Ⅱ, P=0.017), it can be explained that all the three alarm calls are warning sounds; however, I don’t know about the function of each alarm call enough to be able to describe the details.en_US
dc.description.sponsorship生命科學系zh_TW
dc.language中文
dc.subject台灣紫嘯鶇zh_TW
dc.subject給食聲zh_TW
dc.subject警戒聲zh_TW
dc.subject育雛zh_TW
dc.subject護巢zh_TW
dc.subjectMyiophoneus insularisen_US
dc.subjectfeeding callen_US
dc.subjectalarm callen_US
dc.subjectbreeding behavioren_US
dc.subjectnest defenceen_US
dc.title台灣紫嘨鶇育雛期親鳥給食聲與警戒聲之研究zh_TW
dc.titleFeeding and alarm call of Formosa Whistling Thrush (Myiophoneus insularis) during nestling perioden_US
Appears in Collections:學位論文

Files in This Item:
File Description SizeFormat 
n069343025201.pdf228.55 kBAdobe PDFView/Open
n069343025202.pdf309.18 kBAdobe PDFView/Open
n069343025203.pdf208.24 kBAdobe PDFView/Open
n069343025204.pdf330.98 kBAdobe PDFView/Open
n069343025205.pdf389.3 kBAdobe PDFView/Open
n069343025206.pdf161.11 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.