Please use this identifier to cite or link to this item: http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101863
Full metadata record
DC FieldValueLanguage
dc.contributor洪有情zh_TW
dc.contributorYu-Ching Hungen_US
dc.contributor.author林永來zh_TW
dc.contributor.authorYung-Lai Linen_US
dc.date.accessioned2019-09-05T01:20:39Z-
dc.date.available2003-07-01
dc.date.available2019-09-05T01:20:39Z-
dc.date.issued2002
dc.identifierN2002000010
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22N2002000010%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101863-
dc.description.abstractzh_TW
dc.description.abstractIn this article, by making use of Gr¨obner basis, we determine the Hilbert-Kunz function of binomial hypersurfaces of the form f := Xa1 1 · · ·Xar r Y b1 1 · · · Y bs s + Y c1 1 · · · Y cs s Zd1 1 · · ·Zdt t which is HKR(n) = p(r+s+t−1)n + r+s+t−2 Xk=0 fk(n)pkn for n 0, where is a rational number and fk(n) is an eventually periodic function of n for each k. Moreover, we also determine the leading coecient . ien_US
dc.description.sponsorship數學系zh_TW
dc.language英文
dc.subjectHilbert-Kunzzh_TW
dc.titleHilbert-Kunz Functions of Binomial Hypersurfacesen_US
Appears in Collections:學位論文

Files in This Item:
File Description SizeFormat 
001001.pdf128.14 kBAdobe PDFView/Open
001002.pdf206.7 kBAdobe PDFView/Open
001003.pdf164.87 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.