Please use this identifier to cite or link to this item:
Title: 一些三項高次曲面的希爾伯特方程式
On Hilbert-Kunz Functions of Some Trinomial Hypersurfaces
Authors: 洪有情
Yu-Ching Hung
Shin-Huei Chen
Keywords: 希爾伯特方程式
Gr\"{o}bner basis
Hilbert-Kunz function
Issue Date: 2006
Abstract: 這篇論文主要是利用Gröbner basis去判斷一些限制條件下的高次曲面的希爾伯特方程式,經過化簡我們得到的結論跟以往其他論文所做的結果一致。
In this paper, by making use of Gr\"{o}bner basis, we determine the Hilbert-Kunz function of some trinomial hypersurfaces of the form \[f:=X^{a}Y^{b}+Y^{c}Z^{d}+Z^{e}\] with $0<a\leq b\leq c$, which is \[n\longmapsto \lambda p^{2n}+f_1(n)p^n+f_0(n)\] for $n\gg 0$, where $\lambda=\left[ \dps \sum_{k=1}^2(-1)^{k+1}S_k(a,b)\frac{e}{u^k}\right]$ and $f_k(n)$ is an eventually periodic function of $n$ for each $k$.
Other Identifiers: GN0693400180
Appears in Collections:學位論文

Files in This Item:
File Description SizeFormat 
n069340018001.pdf67.66 kBAdobe PDFView/Open
n069340018002.pdf77.29 kBAdobe PDFView/Open
n069340018003.pdf84.3 kBAdobe PDFView/Open
n069340018004.pdf75.34 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.