光電工程研究所
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/63
本所於民國91年成立碩士班,94年成立博士班。本所成立之宗旨及教育目標在於培育符合社會所需的光電科技專業人才,本所發展目標在於實現學界對於國內產業的關懷與參與之願景,並朝向「產業知識化、知識產業化」的發展趨勢與需求邁進。近年來,本校已轉型為綜合研究型大學,依據校務整體發展計畫與本所發展策略規劃之需求,將能提供本所未來發展之參考與願景。
本所研究方向 :
一、光電材料與元件模組
二、奈米生醫及醫學影像
Browse
3 results
Search Results
Item 利用超穎材料和多孔微結構實現被動太赫茲元件之研究(2024) 伍姵蓉; Wu, Pei-Jung在光學領域中,傳統的光學元件,包括濾波器、吸收器和感測器,通常需要經過繁複且耗時的製程製作。然而,由於超材料具有卓越的特性,可以透過圖形設計實現其功能。在太赫茲波段的應用中,超材料工作頻段的可調製性引起了廣泛關注。此外,於太赫茲波段下所設計超材料的晶胞大小尺寸可以透過成熟的黃光微影製程實現,有助於改善太赫茲波段下光學應用的不足。本論文主要分為三個部分。第一部分探討了利用電控方式調製石墨烯帶,並結合多個方形環組成的超材料結構,形成太赫茲濾波器。透過調整方形環的尺寸,實現了多頻段濾波功能。此外,透過施加偏壓於石墨烯帶,能夠改變石墨烯的費米能階,進而將多頻太赫茲濾波器調整為單頻濾波器,可作為開關,對於6G通訊波段的發展具有潛在應用價值。第二部分著重於設計超材料作為超寬頻太赫茲吸收器,其在2.95至4.96 THz頻率範圍下表現出高達90 %的吸收率。同時,結合電控方式調製石墨烯,使吸收器的吸收頻段藍移,最高吸收頻率可達5.97 THz。值得注意的是,當改變入射角時,吸收體在大範圍的角度下仍能保持優異的吸收性能,表明此吸收器對於入射角具有不敏感性,有望實際應用於太赫茲偵測器。第三部分將太赫茲超材料感測器與多孔材料結合,用於氣體感測器。以可吸收一氧化氮之薄膜為例,利用鈣鈦礦結構鈦酸鋅與還原氧化石墨烯氣凝膠形成多孔材料,與超材料整合成超材料氣體感測器進行量測。在室溫下對於50 %的一氧化氮具有16.4 %的響應,且對不同氣體的具有高度選擇性,將實現室溫下以非接觸式氣體量測提供的可能,有助於生物醫學與穿戴式裝置的發展。第四部份將利用太赫茲超材料檢測極性液體,超材料上放置的目標材料達到一定厚度時,共振頻率變化飽和。為了有效利用超材料進行量測,需要考慮目標材料的光學特性,評估其可適用的最大厚度。超材料研究使得對薄膜介電常數深入研究成為可能,在此無需耗費大量材料。擴大檢測範圍允許深入研究各種極性液體對THz波的高度吸收的介電特性。這項研究有望克服THz波受極性液體吸收的限制,並在生物樣本檢測方面取得實質進展。總結而言,本論文致力於不同種不同太赫茲元件的開發,包括電控調製石墨烯超材料濾波器、具廣角不敏感吸收性的石墨烯超材料吸收器,以及高度選擇性的一氧化氮氣體感測器,與液體感測器。這些應用驗證了超材料在太赫茲波段的獨特光學特性,對太赫茲波段的應用將產生深遠的影響。Item 反射式太赫茲光譜於多頻感測器與化合物半導體光電特性量測之應用(2023) 陳裕昇; Chen, Yu-sheng近年來太赫茲的研究非常興盛,太赫茲時域光譜(THz-TDS)因具有非接觸和非破壞性等優點,被廣泛的應用在各種材料量測上,但是對於一些高摻雜的化合物半導體以及超材料吸收器等光無法穿透的材料,反射式的系統就顯得相當重要。於是我們利用反射式太赫茲時域光譜(THz-TDRS)量測高摻雜化合物半導體的複數折射率以及電導率,並利用Drude-Smith model來擬合電導率,求出材料的電漿頻率與載子散射時間,並用這兩個參數得到材料的載子濃度與載子遷移率。我們還設計了一種可以用於反射式太赫茲時域光譜量測的超材料,近年來超材料因其卓越調製太赫茲的能力而備受關注,但由於其晶胞尺寸大小的關係,使得太赫茲超材料受到傳統微奈米製程的限制,傳統的製程有著步驟繁瑣、耗時以和昂貴的設備等問題,為了克服這些困難,我們提出了一種基於3D列印設計的太赫茲超材料感測器,並利用簡單的雙狹縫設計達到多頻感測器的功能,我們利用有限元素法模擬了超材料的吸收頻譜、電磁場的分佈還有對於血液成分的感測能力,並且說明了元件製程的可能性。本論文主要分為兩個部分,第一個部分主要為第三代半導體的光電特性量測,第二部分為基於3D列印的超材料感測器模擬。Item 微波輔助法製成石墨烯於可撓式複合材料及其可穿戴式傳感器之研究與應用(2018) 杜柏翰; Tu, Po-Han我們提出一個在未來很有前景的方法,利用低成本來大量製成石墨烯,在本論文中我們主要在探討以微波輔助法製成石墨烯於可饒性基板PDMS傳感器之研究,實驗共分三部分,第一部分,以不同參數的溶劑插層後使用微波輔助還原法來製備出石墨烯。第二部分,並以拉曼光譜(Raman)進行分析I2D/IG訊號比來判定石墨烯品質,經過一系列的測試我們發現在硫酸:硝酸鈉:去離子水比為35毫升:0.7毫克:5毫升有最佳的條件,I2D/IG訊號比為0.63。第三部分,藉由拉伸測試來量測應變傳感器進一步得到應變係數(gauge factor),此係數可代表傳感器的靈敏度且應變量(strain)可達到30%,另外我們做了彎曲感測,使石墨烯在未來有更多更廣的應用可能性。傳感器基板我們選擇了聚二甲基矽氧烷(Polydimethylsiloxane,PDMS),此材料具有疏水性、無毒、有彈性、透光性佳等,讓未來石墨烯應變傳感器的應用端可以往生醫,作為人體的感測器。