光電工程研究所
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/63
本所於民國91年成立碩士班,94年成立博士班。本所成立之宗旨及教育目標在於培育符合社會所需的光電科技專業人才,本所發展目標在於實現學界對於國內產業的關懷與參與之願景,並朝向「產業知識化、知識產業化」的發展趨勢與需求邁進。近年來,本校已轉型為綜合研究型大學,依據校務整體發展計畫與本所發展策略規劃之需求,將能提供本所未來發展之參考與願景。
本所研究方向 :
一、光電材料與元件模組
二、奈米生醫及醫學影像
Browse
6 results
Search Results
Item 基於多孔隙半導體材料的二氧化氮氣體感測器之研製(2024) 陳宥任; Chen, You-JenItem 氧化鋅奈米柱與奈米管之製備及其應用研究(2009) 葉佳靈隨著工業發展,人們對石油之需求與日俱增,但石油終將耗竭,並造成嚴重汙染,故近年世界各地均大力提倡綠色環保,紛紛投入綠色能源之開發,其中以水裂解(water splitting)產氫為目前最熱門之議題,因此須開發新穎之水裂解工作電極,以提高其光電轉換效率,而本研究利用水熱法(hydrothermal method)於矽晶圓與摻氟之二氧化錫基板上成長高均向性之一維氧化鋅(zinc oxide)奈米柱與奈米管做為工作電極,並將其應用於水裂解技術。 本研究以硝酸鋅(zinc nitrate)與四氮六甲環(hexamethylenetetramine)混和溶液,固定其反應溫度,並調控不同之晶種溶劑、溶液濃度、反應時間、基材等反應條件,成功將氧化鋅奈米柱蝕刻為氧化鋅奈米管,並探討其成長機制。以場發射掃描式電子顯微鏡(field emission scanning electron microscopy;FESEM)與X光繞射儀(X-ray diffraction;XRD)分別鑑定氧化鋅之表面形貌與晶體結構,於不同溶液濃度與成長時間下所製備出之氧化鋅奈米柱陣列具不同之長寬比(aspect ratio)與成長密度。於水裂解法方面,將已完成成長氧化鋅奈米柱與奈米管之基板與硒化鎘量子點結合,利用硒化鎘量子點吸收可見光之特性,成功將可見光轉換為電子電洞對,利用氧化鋅作為工作電極,將電子電洞對分離,使其不易再結合。於循環伏安量測方面,當偏壓於0時,以氧化鋅奈米管為工作電極,其可測得之光電流為1.45 mA/cm2,而以奈米柱之光電流為1.12 mA/cm2,本研究成功利用具較大之比表面積之奈米管組裝水裂解元件,以提高光電流。Item ZnO薄膜之電性與光學係數受外加紫外光之調制特性研究(2007) 陳顗彭; Chen,Yi-Pong摘要 氧化鋅(zinc oxide,ZnO)其光學能帶(Optical energy band)寬度約為3.37eV,其正好位於紫外光波長範圍內,若利用紫外光照射氧化鋅薄膜將造成價電帶電子吸收紫外光能量後躍遷至導電帶,因而增加其導電性,但也因價帶電子變少後而造成介電係數(dielectriccoefficient)變小,且在移除紫外光照射後隨即回覆其原來狀態,我們利用此特性來探討氧化鋅薄膜在外加不同強度紫外光下其電性與光學特性的變化。 光學量測上首先利用共路徑外差式干涉儀(common path heterodyne interferometer)來量測氧化鋅薄膜的折射率與介電係數,其中共路徑技術用於抑制相位飄移,以使干涉儀穩定,而外差干涉技術則是利用聲光調變器(acoustic optical modulator,AOM)將訊號載在特殊頻率上,透過鎖相放大器(lock-in amplify)針對此特殊頻率進行解析,以排除環境雜訊,使得共路徑外差干涉儀成文一套高穩定高準確性的量測系統。 在電性量測上,由於未掺雜的純氧化鋅薄膜電阻率很高,不易直接量測,因此制備成ZnO-base薄膜電晶體,形成透過閘極電極降低薄膜電阻,來簡化量測所需,以探討氧化鋅薄膜受紫外光影響的導電特性,其結果與光學量測系統所測得折射率與介電係數的結果驗證。Item ZnO-SiO2一維光子晶體共振器之之製作與特性研究(2006) 楊璧華本實驗以射頻磁控濺鍍法(Radio Frequency magnetron sputtering)在玻璃基板上交錯濺鍍ZnO及SiO2薄膜形成一維光子晶體,藉由考慮ZnO及SiO2的折射率,設計適合的薄膜厚度及週期數使得該一維光子晶體在500 nm到600 nm產生所謂的光譜帶隙(Photonic band gap)。而且,由於ZnO及SiO2在可見光的透明度極高,若在光子晶體的中心處再加入一層ZnO,則可形成一個可見光的一維光子晶體共振器。 本實驗研究發現,ZnO的折射率在UV光的照射下,可隨UV光的照射強度產生規律的變化,且呈現可逆行為,即當UV光移除時,ZnO的折射率將恢復到未加UV光時的折射率(2.032),此結果表示ZnO-SiO2一維光子晶體共振器,可利用外加UV光照射強度的不同,達到共振波長可調性之目的。 另外,我們製作ITO-SiO2一維光子晶體共振器,在中心處加入不同厚度的ZnO缺陷層,觀察其穿透頻譜,發現增加ZnO缺陷層的厚度,光子晶體共振器的共振波長有往長波段偏移的現象。Item 斜向濺鍍氧化鋅於氮化鎵奈米柱陣列之新穎紫外光二極體研究(2014) 蕭志忠; SIAO, Jhih-Jhong本論文是以磁控濺鍍系統斜向成長 n 型氧化鋅於 p 型氮化鎵二維奈米柱陣列結構,來製作具高載子注入效率與高輻射複合率之氧化鋅/氮化鎵異質接面紫外光發光二極體奈米柱陣列(ZnO/GaN nanorod array LEDs)。藉由氮化鎵奈米柱本身所提供的遮蔽效應(shadowing effect),斜向氧化鋅濺鍍氣流(glancing ZnO vapor-flows)將選擇性的沉積於氮化鎵奈米柱陣列頂端,並有效地連結整個二維氮化鎵奈米柱,最終形成具奈米尺寸的異質接面(nano-junctions)發光二極體陣列。我們所製作出之氧化鋅/氮化鎵異質接面紫外光發光二極體奈米柱陣列本身具有良好的二極體整流特性和低導通電壓(4.5V),並在順向電流的操作下可穩定發射主要波長為 λ=390nm 之偏紫白光發光光譜。其主要可歸因於奈米異質接面結構之高載子注入效率所造成氧化鋅缺陷複合飽和,以及氧化鋅近能隙複合發光效率之提升。更重要的是,本論文所提出的斜向濺鍍氧化鋅方法將可省去在傳統奈米柱結構之鈍化與絕緣過程中,所需涉及聚合物填充或其他複雜之材料生長步驟,大幅地提升元件良率與降低製作成本,並可廣泛地運用於其他具奈米尺寸之光電元件(nano-devices)。Item 氧化鋅/硫化鋅核殼奈米結構之製備與特性分析(2013) 黃薇本論文使用微波輔助合成技術製備硫化鋅奈米球體、氧化鋅奈米柱與具陣列形貌的氧化鋅/硫化鋅核殼結構。我們先使用硫代乙醯胺分別與硫酸鋅和硝酸鋅作為前驅物,合成出硫化鋅奈米球體。再使用六亞甲基四胺個別與硫酸鋅和硝酸鋅反應,能分別合成出氧化鋅奈米柱與片狀結構。最後,我們先在矽基板上成長氧化鋅奈米柱陣列,再與硫代乙醯胺進行反應,成功製備出氧化鋅/硫化鋅核殼結構。我們進一步使用X光繞射光譜、掃描式電子顯微鏡與光激螢光光譜等實驗討論所製備氧化鋅/硫化鋅核殼結構的結構與光學特性。 由X光繞射光譜可以發現氧化鋅/硫化鋅核殼結構會清楚呈現出屬於氧化鋅(002)的繞射訊號,隨著增加硫代乙醯胺的莫耳濃度,屬於硫化鋅(111)繞射峰訊號強度也會逐漸增加。由掃描式電子顯微鏡的結果,可以發現氧化鋅奈米柱核體會隨著硫代乙醯胺的莫耳濃度增加而變細且變短,而硫化鋅殼體的顆粒則會逐漸變大。由低溫光激螢光光譜圖中,可以觀察到氧化鋅/硫化鋅核殼結構的發光位置約為3.33 eV,是屬於氧化鋅的近帶能隙的放光機制。 關鍵詞:微波輔助合成、硫化鋅、氧化鋅、核殼結構