光電工程研究所
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/63
本所於民國91年成立碩士班,94年成立博士班。本所成立之宗旨及教育目標在於培育符合社會所需的光電科技專業人才,本所發展目標在於實現學界對於國內產業的關懷與參與之願景,並朝向「產業知識化、知識產業化」的發展趨勢與需求邁進。近年來,本校已轉型為綜合研究型大學,依據校務整體發展計畫與本所發展策略規劃之需求,將能提供本所未來發展之參考與願景。
本所研究方向 :
一、光電材料與元件模組
二、奈米生醫及醫學影像
Browse
3 results
Search Results
Item 低場磁振造影於生物組織影像之特性研究(2017) 陳致豪; Chen, Jhih-Hao摘要 本研究結合了超導量子干涉元件(Superconducting quantum interference device, SQUID )磁性量測技術,並使用預先極化技術提升磁矩的磁化率,在鋁屏蔽屋裡建造低場磁振造影系統(Low-field MRI)。為了降低地球磁場對系統的影響,設計了一對地球磁場補償線圈,用來抵銷地球磁場的垂直分量,並旋轉系統主磁場方向與地球磁場的水平分量平行,藉此方便調整主磁場的強度,最後使用三個方向的梯度線圈,使磁場均勻度提升,以及造影所需頻率、相位編碼之應用。 在磁振造影部分,藉由改變系統的共振頻率,以及梯度磁場的造影序列,我們大幅提升了訊雜比(signal-to-noise ratio, SNR),原本的SNR由213.15提升至533.14,影像品質進而提升許多。 為了驗證低場磁振造影系統應用的可行性,我們造影出清晰的蔬果結構性影像,並藉由水果二維與三維的磁振造影,可以判斷水果損傷的確切位置。在生醫方面的應用,我們進行手臂的磁振造影,也能夠得到結構性影像;豬肉的磁振造影也能觀察到輪廓,初步驗證本研究之低場磁振造影系統,做為生物醫學應用的可行性,此外系統造價成本及維護費用低廉,極具產業化的價值與潛力。 關鍵字:低場磁振造影、超導量子干涉元件、預先極化技術Item 大型超低場磁振造影系統架設與特性研究(2016) 吳沛哲; Wu, Pei-Che在本研究中,我們結合了預先極化技術以及超導量子干涉元件 ( Superconducting quantum interference device, SQUID ) 開發了大型低場核磁共振及核磁造影系統。系統主要由均勻磁場、預極化線圈、脈衝線圈、SQUID、及三個維度的梯度線圈所組成。為了抵銷地球磁場的雜訊,我們設計了一對抵銷地球磁場的線圈,並將系統放置於屏蔽屋之內,來降低環境雜訊對系統的影響。在磁共振訊號量測中,經由梯度磁場補償提高了系統磁場的均勻度後,並對內徑10公分接收線圈做最佳化。使400毫升去離子水樣品的磁共振訊號頻譜線寬可以從原本的15赫茲縮減到1赫茲,且訊雜比由21.14提高到340.6。在磁振造影量測中,我們對不同大小的水樣品進行二維平面造影,使用相位編碼、頻率編碼的造影方法,均能得到完整的樣品影像,驗證本系統的空間解析度可以達到5毫米 ; 在三維造影,我們成功將3cm厚的樣品成功切成6個切面,造影解析度也進一步提升至5mm x 5mm x 1cm。新系統的樣品量測範圍遠遠大於從舊系統的量測面積,從原本的內徑6公分圓面積擴大至內徑20公分的圓面積,增加未來使用低磁場系統來量測動物器官影像、人體腦部造影的可行性,且系統造價低,具有產業化的潛力。Item 磁性奈米粒子顯影劑在低場核磁共振中增強T1權重造影特性研究(2015) 賴瑞澤; Lai,Jui-Tse磁性奈米粒子溶液又稱為磁流體,在高場核磁共振系統常被當作T2顯影劑。磁流體為超順磁顯影劑,相較於其他顯影劑,具有較好的生物相容性。而在過去的研究指出低磁場磁振造影下T1對比效果可被增強,因此期望應用低場磁振造影系統並與傳統高場磁振造影系統,探討磁性奈米粒子顯影劑在高場與低場下的對比效應。為此本研究使用並改進自製的低場核磁共振系統以及7T核磁共振系統,量測不同濃度磁流體的T1及T2弛緩時間,以得到高場以及低場的弛緩率R1及R2。驗證磁流體在高、低場下的T1與T2對比效果。並透過磁振造影影像強度,驗證了磁流體在低場的T1權重造影對比度比高場佳;而含鐵量高的磁流體T2權重造影在高場對比度比低場佳;含鐵量低的磁流體T2權重造影在低場對比度比高場佳。確立磁流體在低場磁振造影下,僅需較低劑量即能有良好的對比效益。故能降低劑量以及成本,且能減少因劑量而產生的副作用風險,具有臨床應用的潛力。