運動與休閒學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/6
為配合我國社會變遷與體育發展及本校的轉型與發展,本學院於90年8月正式成立,並將原屬本校教育學院之體育學系(所)、運動競技學系、運動與休閒管理研究所調整成立運動與休閒學院,並於95學年度增設運動科學研究所:為提升本院競爭力於101學年度運動競技學系與運動科學研究所整併為「運動競技學系」,運動與休閒管理研究所與管理學院餐旅管理研究所整併為「運動休閒與餐旅管理研究所」。
News
Browse
39 results
Search Results
Item 不同握把橢圓機之生物力學分析(2009) 李俊義; Lee, Chun-Yi現今橢圓機不僅用來健身運動還廣泛使用於醫療復健上,其提供下肢與上肢的訓練,但其並未有完整的握把方面分析。目的:分析不同握把橢圓機之生物力學影響,並建立橢圓機上肢自然運動軌跡。方法:受測者為10名健康成年男性,分以轉速60 rpm分別在三種握把前後距離 (Orig、Middle、Proximal) 和三種寬度 (Narrow、Orig、Wide) 以及3D握把與Free方式進行踩踏。橢圓機之阻力設為0 W,每次進行30秒踩踏,到達穩定之後擷取10秒的資料進行分析。資料分析運動學參數、肌電振幅和手部力量值,使用單因子變異數進行統計分析,顯著水準定為α=.05。結果:傳統橢圓機握把設計無法有效的提供上肢訓練,而利用3D握把較能提高肱二頭肌的活化效果,對於訓練上半身可能會較有幫助。在無使用握把的踩踏方式上,股二頭肌的活化有較低的現象和身體較不穩定的情況,其藉由踝關節的改變來維持身體質量中心的穩定和驅動飛輪。在改變握把前後距離可能會影響到肱三頭肌的訓練效果。結論:一、未來橢圓機可增加上肢的運動量。二、橢圓機握把軌跡可模擬手部自然擺動的軌跡。三、橢圓機握把可考量以多向度的握把設計。Item 排球不同型態發球對兩種等級接發球動作之運動學分析(2009) 鍾玓芸; Ti-yun Chung本研究主要目的在探討兩種不同型態排球發球方式(漂浮發球、跳躍發球)對接發球員接發球動作運動學參數影響。受試對象以甲組特優級第一名球隊臺灣師範大學男子、女子排球代表隊自由球員各三名,以及乙組男子、女子排球校隊自由球員各三名。實驗儀器以兩部Fastec Inline高速攝影機(250Hz)同步擷取排球選手執行兩種不同型態發球方式之接發球動作運動學參數。運動學參數透過高速攝影機拍攝,影片以Kwon 3D動作分析軟體進行二度空間直接線性轉換(2D-DLT),得到發球球速、接球後球速、發球角度、接球後角度、發球擊到球到接到球之時間、接球前(中)上肢角度、接球前(中)下肢角度變化等參數。在運動學與動力學參數比較方面, 將得到參數資料以SPSS 13.0版統計軟體進行統計分析,以雙因子變異數分析來檢定不同組別接受兩種不同型態接發球之差異顯著性,統計水準定為α=.05;此外在不同受試者間,依瞬間速度、時間、角度的個別差異採用描述性統計。 經研究結果統計如下: 一、兩種不同型態發球速度與角度皆達顯著差異(p<.05),回球速度與角度皆未達顯著差異。 二、兩種不同型態發球之接球重心合速度達顯著差異(p<.05)。 三、女甲乙組接球前上肢角度未達顯著差異,接球中手腕、手臂角度達顯著差異 (p<.05),而接球前與接球中下肢角度皆未達顯著差異。 四、男生甲乙組接球前手腕、手臂角度皆達顯著差異(p<.05),接球中手臂角度達 顯著差異(p<.05),而接球前與接球中下肢角度皆未達顯著差異。Item 網球第二發球之運動學分析(以上旋式及側旋式為例)(2005) 林俊城; Jiun-Cheng Lin在網球比賽中,發球為最重要的技術之一,也是主要得分手段。而第二發球(second serve)在比賽中亦佔舉足輕重的地位。正確的第二發球方式不僅能避免無謂的失分,更能避免處於劣勢。本研究以一部Redlake高速攝影機(250Hz),針對十名國內大專網球甲組球員上旋式及側旋式的第二發球作二度空間的運動學分析,主要在探討不同第二發球的運動學變數,並了解發球方式對進球率及球速的影響,找出較佳的第二發球方式,以供教練或教師教學參考依據。資料分析是擷取每位受試者的不同第二發球發進指定區域五球中球速最快的動作做比較。影片資料經由kwon3D 3.0版軟體分析,統計處理以SPSS統計軟體計算分析,以 a=.05顯著水準的相依樣本t考驗得到下面的結果: 一、擊球高度及準確率,兩者皆未達顯著差異。 二、擊球後球速,側旋式發球球速(32.93m/s)較上旋式發球(30.92m/s)為快(P< .05)。 三、上肢關節角速度、線性速度方面: (一)側旋式發球肩關節角速度比上旋發球快(P< .05),而肘及腕關節也有較高的平均值。 (二)側旋式及上旋式發球肩關節線性速度未達顯著差異。 (三)側旋式發球肘關節及腕關節線性速度分別為4.09m/s及7.0m/s,與上旋發球3.7m/s及5.72m/s達顯著差異。 本研究結論如下:在運動學方面,側旋發球有較快的角速度及線性速度,以致於會有較快的發球速度。而且側旋發球也有高平均的準確率。因此,選手可依比賽需求多搭配使用側旋球。。Item 跆拳道兩種預備站姿跳後踢之生物力學分析(2008) 蔡葉榮; Tsai,Yeh-Jung跆拳道(Taekwondo)是我國亞奧運重點奪金項目,跳後踢是跆拳道比賽中經常被應用於反制旋踢的主要踢法之一。本研究旨在探討不同預備姿勢下進行不同高度跳後踢動作的動作特徵與差異,及其生物力學參數對踢擊表現的影響,以做為跳後踢動作訓練及指導之參考依據。本研究以10名跆拳道優秀選手為受試對象(年齡:20.4±1.5歲;身高:177.9±2.4公分;體重:64.7±2.6公斤)。利用兩台AMTI測力板 (1000Hz)、十部Motion Real Time高速攝影機(200Hz)和Bio-pac MP35壓力感測系統,同步蒐集受試者在跳後踢動作過程中的運動學和動力學資料。部份角運動學及動力學參數需透過Matlab 7.01自行編寫程式來計算,統計方法主要是以無母數統計檢定(Nonparametric tests)來考驗不同預備站姿與不同踢擊高度生物力學參數之差異,並以皮爾森積差相關檢定各運動學和動力學參數對踢擊表現之影響。本研究主要發現如下: 一、 動作速度方面:「預蹲中端」、「跳動中端」和「跳動上端」明顯快於「預蹲上端」,而「預蹲中端」和「跳動中端」之間則無明顯差異。 二、 踢擊力量方面:「預蹲中端」、「跳動中端」和「跳動上端」明顯大於「預蹲上端」,而「預蹲中端」與「跳動中端」之間則無明顯差異。 三、 軀幹旋轉角速度方面:「跳動中端」和「跳動上端」之肩軸角速度峰值明顯大於「預蹲上端」,而「跳動中端」亦明顯大於「預蹲中端」 四、 地面反作用力方面:「跳動中端」、「跳動上端」之攻擊腳在前後、垂直方向的地面反作用力峰值及衝量均分別明顯大於「預蹲中端」、「預蹲上端」。Item 排球防守中騰空開跳步動作之應用研究(2009) 蘇宥甯; Yo-Lin,Sue現代競技排球朝向求快、求變、求準的趨勢邁進,進而提升了比賽的強度以及速度,想擁有傑出的防守表現,「準確判斷」及「快速移動」已為關鍵的技術目標。而防守屬於被動技術,需隨著攻擊手的變化調整接球動作以應付瞬間移位,以目前競技水準而言,球在空中飛行時間大約在0.3~0.5秒之間,一般選手的反應時間約為0.29~0.33秒,因此,防守選手必須要能準確判斷及獲取爆發力量才能達到迅速移動的效果。本研究主要目的在比較不同層級選手騰空開跳動作型態之差異性,並討論對防守表現的影響。受試對象為受過訓練並且擁有報名參加大專排球聯賽特優級資格之台灣師大優秀甲組排球選手(共計7名),另外一組則為台灣師大乙組排球選手(共計7名),甲組平均年齡20.25歲,身高168.25±4.1公分、平均球齡9.25年;乙組選手平均年齡21.25歲、身高170.75±5公分、平均球齡3年。實驗儀器以兩部JVC高速攝影機(250HZ)同步擷取攻擊手與受試者同時進行中的攻防動作之運動學參數,影片以Kwon3D動作分析軟體進行2D直接線性轉換(2D-DLT),所得參數以t-test檢定結果之差異性,顯著水準為α= .05,再以時間、角度、角速度之參數以描述統計方式說明其差異性。所得結果中發現,甲組7名選手騰空動作出現時間點分佈範圍較為集中,表示甲組選手動作出現時機相當接近,約在0~0.5區間內,另外,甲組選手平均騰空高度約0.10~0.14之間,下壓角度約21.3~30.9之間與所得關節角速度約在169.5~231.4之間,皆明顯大於乙組選手且達顯著差異p< .05。因此提出以下結論,動作出現時機接近則表示接球動作較有節奏感與規律性,能隨著攻擊手動作變化來調整動作時機;而騰空高度高、下壓角度大、速度快,依地面反作用力理論及牽張反射原理得知,除可穩定身體重心接球外,下肢肌群也可獲得有效的爆發力量。Item 高爾夫與木球選手全揮桿動作之生物力學分析(2009) 陳勇升; Yung-Sheng Chen本研究旨在了解優秀大專高爾夫與木球選手揮桿動作的運動學、動力學及上肢肌群肌電訊號之現象及兩者間之異同。研究方法以優秀大專高爾夫與木球男選手各一名為研究對象,進行十次全揮桿動作分析,利用Vicon MX13 System 八架紅外線高速攝影機、兩塊Kistler測力板及Biovision肌電系統,同步收集選手的生物力學資料,並利用Vicon Nesux 1.2及Dasy Lab 6.0軟體進行分析與比較。結果發現:一、運動學部份,在揮桿時間上,高爾夫選手比木球選手的上桿較慢、下桿較快;在軸頂點與重心,高爾夫選手上桿頂點時,軸頂點微偏右側、重心在右,而木球選手軸頂點則微偏左側、重心在右;身體旋轉角度上,高爾夫選手比木球選手製造更多旋轉;球桿速度上,高爾夫球的桿頭速度比木球快;揮桿軌跡上,高爾夫選手的揮桿軌跡接近於同一平面上,而木球選手下桿前期會將桿頭往前移。二、動力學部分,高爾夫選手擊球瞬間之右腳比左腳有較大的地面反作用力;木球選手擊球瞬間地面反作用力主要在左腳。三、上肢肌群肌電訊號部分,在下桿加速期與送桿前期,高爾夫選手右手屈腕肌、右手肱三頭肌的訊號超過50%MVC,帶動手臂與手腕的加速揮桿;而木球選手的右手屈腕肌在送桿前期有明顯的作用現象,且在送桿前期與後期上肢肌群仍有較大的作用情形以穩定球桿。Item 不同防守距離三分球投籃之運動學分析(2009) 林正達; Lin,Cheng-Ta本研究目的在探討以三種不同距離 ( 1公尺、 1.5公尺、 2公尺) 防守時,選手在實施三分球跳投動作運動學參數上的差異。研究方法是使用一部 Redlake 高速攝影機(125Hz),收集六位高中男子甲級籃球隊選手,當對手在不同距離防守時,選手所做的三分球投籃的動作資料。以無母數 Friedman 檢定分析三種防守距離運動學參數上差異的顯著性,並以 Spearman 無母數相關進行計算及檢定。結果發現:出手速度、出手角度、出手高度隨防守距離縮短而增加。重心最低點在無防守、距離2公尺至距離 1.5公尺時,防守趨近下肢關節角度愈小,角速度愈大。防守距離 1公尺時,下肢關節角度變大,角速度變小。出手瞬間上肢關節角度沒有差異,上肢關節角速度與重心最低點下肢關節角度呈負相關。上肢關節角速度在無防守至距離 1.5公尺時,防守趨近上肢關節角速度愈小。防守距離 1公尺時,角速度變大,肩關節差異最大。出手重心角度對隨防守距離趨近而減小。投籃命中率在各防守距離間沒有顯著差異,但與防守距離還是有相關。由此可知,在不同防守距離的三分球投籃動作特徵及影響命中率皆不盡相同。防守距離在 1.5公尺以上時,重心較低、運用較多下肢力量,防守愈近力量愈大。防守距離在 1公尺時,重心提高、下肢力量變小,投籃者增加上肢動作速度以彌補下肢力量不足,但從實驗及命中率觀察發現,下肢力量變小容易影響投籃穩定性。因此未來教練指導學生投籃時,應瞭解不同防守距離投籃的動作特徵,並在教學上有所調整,較能達到事半功倍的效果。Item 壘球擲準動作之運動學分析(2009) 陳妙瑋; Miao-Wei Chen摘 要 本研究目的為比較不同技能水準之實驗參與者壘球擲準表現與動作型態之差異,藉由運動學分析,探討女壘選手與一般女大學生投擲動作型態普遍上之差異,分別針對選手的正確動作技巧及一般人的錯誤動作型態,進行說明解讀,並對於一般人學習投擲技巧提出具體之建議。八位大專甲組女子壘球選手與八位不具壘球投擲經驗之女大學生為實驗參與者,實驗工作為對著16公尺之目標範圍進行壘球擲準工作,每人投擲15顆,利用高速攝影機(200Hz)與陀螺儀動作分析系統(120Hz)擷取每次投擲動作,以進行各參數的計算分析,並利用Excel、Mathematica軟體製作上肢角度變化圖與肘、肩關節角角圖。發現:比較兩組投擲準確性成績,發現選手組優於一般組達顯著差異t(14)= 6.851, p<.05。比較兩組球速,發現選手組球速大於一般組達顯著差異t(14)=5.684, p <.05。比較兩組出手瞬間跨步前導腳(左腳)膝關節角度之平均值,選手組小於一般組達顯著差異t(13)=-2.932, p<.05。比較兩組球出手瞬間軀幹與水平面夾角及頭部與水平面夾角,雖未達顯著差異但接近顯著差異,皆為選手組大於一般組t(13)= 1.971, p =.089、t(13)= 2.180, p =.070。比較兩組球出手瞬間上肢部位(腕、肘、肩)角速度之平均值,發現肘關節角速度選手組大於一般組達顯著差異t(13)= 2.339, p<.05。製作上肢角度變化圖,觀察後發現選手具有出手前肘關節角度短時間內變小再變大之情形,本研究解讀為「引肘向前」之動作技巧,反觀一般組未曾出現此現象。製作肘、肩關節角角圖,發現選手組與一般組的最大差異來自於起始動作後,「後擺」與「抬肘」之動作型態。依據本實驗目的,經由結果之統計分析與討論,對於一般人投擲動作提出下列建議:進行投擲動作時,除了加強後擺、抬肘,使投擲手引肘向前的動作技巧,亦須注意應將跨步加大以利投擲時身體維持較低之重心,並在投擲動作中,應保持身體往前加速,而避免頭部與軀幹過度後仰。Item 優秀合球女選手在不同距離雙手投籃之運動學分析(2008) 楊峰銓本研究目的在於探討我國合球國家隊之女選手在六公尺、八公尺和十公尺之三種不同距離情況下,在雙手投籃動作之運動學參數變化的情形。研究方法是利用一部JVC 9800型高速攝影機(120Hz),收集選手在三種距離下,雙手投籃動作之動作影像。以單因子變異數分析檢定在不同距離間運動學參數上的差異及其顯著性。結果發現: 一、雙手投籃動作之各運動學參數隨距離增加的變化情形如下: 1、出手速度、髖關節最大角速度、最大重心速度、出手重心速度、 最大肩關節點速度隨距離增加而增加。 2、出手前最大重心速度之重心角度隨距離增加而減小。 3、在10m投籃會比6m投籃時,需要增加開始下蹲至出手瞬間的球體 水平位移、出手重心角度及肩關節最大角速度。 4、在10m投籃會比6m投籃時,需要減少出手角度、下蹲完成之髖關 節角度、肩關節角度和軀幹傾斜角度。 5、在8m與10m投籃會比6m投籃時,需要增加膝、踝關節最大角速 度、下肢關節對球速的最大作用程度。 二、雙手投籃動作在不同距離間的共同特徵: 1、出手瞬間選手上肢會有固定的伸展動作型態。 2、優秀選手在不同距離投籃會有一致的動力鏈模式,能在身體處於 協調下將球投出。 因此未來合球教練可以參考研究所得量化資料,加上實際教練經驗,判斷出不同距離投籃應有的協調動作,作為投籃動作教學或修正姿勢的依據。Item 不同層級選手後手翻技術之比較分析(2009) 許金樹目的:比較甲組競技體操選手(熟練者)與競技啦啦隊選手(非熟練者)後手翻技術之運動學參數及起跳前動力學參數,探討其特徵,結果提供教練、選手、學習者在日後運動訓練或學習階段作為動作學習的參考。方法:以男性甲組競技體操選手及競技啦啦隊選手各8名實驗參與者,使用2D攝影分析,利用1台JVC 9800數位攝影機(60 Hz)擷取記錄二組選手的站立原地後手翻動作資料,並以一塊Kistler測力板(600 Hz)同步收集起跳前下肢地面反作用力資料,然後透過Kwon 3D動作分析系統與Kwon GRF軟體,進行各參數的分析運算。結果:體操選手及啦啦隊選手在跳跳前垂直地面反作用力最大值分別約是體重的2.3倍、2.19倍;最大水平力量分別約是體重的0.67倍、0.53倍;體操選手在離地高度、第一空中期時間、起跳重心速度、手離地重心水平速度、起跳髖關節角度皆顯著大於啦啦隊選手。結論:雙臂擺動應在上升時才開始加速,並配合髖、膝的伸展推蹬,有利後續動作。起跳前髖關節的伸展及膝關節的推蹬是起跳階段重要的關鍵,在支撐階段應快速的推撐,以便銜接水平力量,快速的屈曲髖關節有助於推撐及著地。