電機工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/85

歷史沿革

本系成立宗旨在整合電子、電機、資訊、控制等多學門之工程技術,以培養跨領域具系統整合能力之電機電子科技人才為目標,同時配合產業界需求、支援國家重點科技發展,以「系統晶片」、「多媒體與通訊」、與「智慧型控制與機器人」等三大領域為核心發展方向,期望藉由學術創新引領產業發展,全力培養能直接投入電機電子產業之高級技術人才,厚植本國科技產業之競爭實力。

本系肇始於民國92年籌設之「應用電子科技研究所」,經一年籌劃,於民國93年8月正式成立,開始招收碩士班研究生,以培養具備理論、實務能力之高階電機電子科技人才為目標。民國96年8月「應用電子科技學系」成立,招收學士班學生,同時間,系所合一為「應用電子科技學系」。民國103年8月更名為「電機工程學系」,民國107年電機工程學系博士班成立,完備從大學部到博士班之學制規模,進一步擴展與深化本系的教學與研究能量。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    基於教與學最佳化策略之適應性混合模糊PID控制應用於音圈馬達運動平台
    (2024) 王彥涵; Wang, Yan-Han
    本論文目標為針對音圈馬達運動平台設計一適應性混合模糊比例-積分-微分控制策略,使該平台具備優異之定位精度與強健性能。首先說明音圈馬達運動平台的系統架構及運作原理,經由系統鑑別推導出馬達數學模型以及系統參數,將回授訊號達到或保持在理想值使系統變得更加準確且穩定。接著,以模糊理論設計一個模糊PID(Fuzzy Proportional–Integral–Derivative, FPID)控制器,透過動態調整控制增益的方式改善系統穩定度,進一步提升動態響應和強健性。之後,為了進一步提升系統的抗干擾能力,本研究設計一個基於教與學演算法最佳化模糊歸屬函數的適應性混和模糊控制器,讓控制器能夠隨著輸入誤差動態調整歸屬函數的區間,使模糊系統在相同誤差下能反應出更精確的歸屬度,解模糊化得到前饋控制力將進一步提高系統的穩定度並抑制外部干擾的影響。本論文以數位訊號處理器實現上述控制策略並比較兩種追蹤軌跡,最後由實驗結果得知最佳化模糊歸屬函數的適應性混和模糊控制器相比於傳統PID控制器的控制性能,加入雜訊的窗形軌跡平均誤差改善58.28 %,加入雜訊的花瓣形軌跡平均誤差改善66.32 %,且相比於FPID控制器加入雜訊的窗形軌跡平均誤差改善29.99 %,加入雜訊的花瓣形軌跡平均誤差改善45.13 %,證實控制器確實能有效進行音圈馬達定位控制,也使系統在具有干擾的環境下保持穩定性和強健性。
  • Item
    A GA-based indirect adaptive fuzzy-neural controller for uncertain nonlinear systems
    (2002-12-06) W.-Y. Wang; C.-C. Hsu; C.-W. Tao; Y.-H. Li
    In this paper, a novel approach to adjust both the control points of B-spline membership functions (BMFs) and the weightings of fuzzy-neural networks using a reduced-form genetic algorithm (RGA) is proposed. Chromosomes consisting of both the control points of BMFs and the weightings of fuzzy-neural networks are coded as an adjustable vector with real number components and searched by the RGA. Moreover, we propose an application of the RGA in designing an RGA-based indirect adaptive fuzzy-neural controller (RIAFC) for uncertain nonlinear dynamical systems. The free parameters of the indirect adaptive fuzzy-neural controller can successfully be tuned on-line via the RGA approach. A supervisory controller is incorporated into the RIAFC to stabilize the closed-loop nonlinear system. An example of a nonlinear system controlled by RIAFC are demonstrated to show the effectiveness of the proposed method.
  • Item
    Adaptive fuzzy-neural sliding mode control for a class of uncertain nonlinear dynamical systems
    (2001-03-24) W.-Y. Wang; M.-L. Chan; T.-T. Lee
    In this paper, a novel design algorithm of adaptive fuzzy-neuralsliding mode control for a class of uncertain nonlinear dynamicalsystems is proposed to attenuate the effects caused by unmodeleddynamics, disturbances and approximate errors. Since fuzzy-neuralsystems can uniformly approximate nonlinear continuous functions toarbitrary accuracy, the adaptive fuzzy control theory is employed toderive the control law for a class of nonlinear system, with unknownnonlinear functions and disturbances. Moreover, the sliding modecontrol method is incorporated into the control law so that thederived controller is robust with respect to unmodeled dynamics,disturbances and approximate errors. To demonstrate the effectivenessof the proposed method, an example is illustrated in this paper.