電機工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/85
歷史沿革
本系成立宗旨在整合電子、電機、資訊、控制等多學門之工程技術,以培養跨領域具系統整合能力之電機電子科技人才為目標,同時配合產業界需求、支援國家重點科技發展,以「系統晶片」、「多媒體與通訊」、與「智慧型控制與機器人」等三大領域為核心發展方向,期望藉由學術創新引領產業發展,全力培養能直接投入電機電子產業之高級技術人才,厚植本國科技產業之競爭實力。
本系肇始於民國92年籌設之「應用電子科技研究所」,經一年籌劃,於民國93年8月正式成立,開始招收碩士班研究生,以培養具備理論、實務能力之高階電機電子科技人才為目標。民國96年8月「應用電子科技學系」成立,招收學士班學生,同時間,系所合一為「應用電子科技學系」。民國103年8月更名為「電機工程學系」,民國107年電機工程學系博士班成立,完備從大學部到博士班之學制規模,進一步擴展與深化本系的教學與研究能量。
News
Browse
124 results
Search Results
Item Minimum-phase criteria for sampled systems via symbolic approach(1996-12-13) C.-H. Wang; W.-Y. Wang; C.-C. HsuIn this paper, we propose a symbolic approach to determine the sampling-time range which guarantees minimum-phase behaviours for a sampled system with a zero-order hold. By using Maple, a symbolic manipulation package, the symbolic transfer function of the sampled system, which contains sampling time T as an independent variable, can be easily obtained. We then adopt the critical stability constraints to determine the sampling-time range which ensures that the sampled system has only stable zeros. In comparison with existing methods, the approach proposed in this paper has less restrictions on the continuous plant and is very easy to implement in any symbolic manipulation packages. Several examples are illustrated to show the effectiveness of this approachItem DSP-based fuzzy neural networks and its application in speech recognition(1999-10-15) S.-C. Chen; C.-C. Hsu; W.-Y. WangA fuzzy-neural network needs to be trained through a learning process, so that suitable membership functions and weightings can be obtained. However, most neural networks are only simulated by computer software, which are not practical for real applications. It is therefore our objective to design an integrated circuit system based on a DSP processor with powerful arithmetical capabilities and fast data processing, and relevant peripheral devices to implement the fuzzy neural network. In terms of implementation cost and feasibility for practical applications, this DSP-based fuzzy neural network will be more practical and usable. Finally, a prospective application of the DSP processor-based fuzzy neural network to recognize speech from a non-designated person is proposedItem Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control(1994-10-05) C.-H. Wang; W.-Y. WangA general methodology for constructing fuzzy membership functions via B-spline curve is proposed. By using the method of least-squares, we translate the empirical data into the form of the control points of B-spline curves to construct fuzzy membership functions. This unified form of fuzzy membership functions is called as B-spline membership functions (BMF's). By using the local control property of B-spline curve, the BMF's can be tuned locally during learning process. For the control of a model car through fuzzy-neural networks, it is shown that the local tuning of BMF's can indeed reduce the number of iterations tremendouslyItem Fuzzy evaluation and expert system in classical control system design(1994-07-01) C.-H. Wang; W.-Y. Wang; T.-T. LeeThe purpose of this paper is to develop an expert system for control system design (ESCSD), with a unique set of fuzzy evaluation rules. The authors' investigation not only uses expert systems for control system design but also proposes a practical way to use a unique set of fuzzy evaluation rules to suggest a better design method for a given plant. A set of fuzzy evaluation rules extracted from four classical design procedures is proposed. It focuses on how to predict the results of design methods. The authors deem the fuzzy evaluation rules are predicting tools of an expert system. It is also shown in this paper that the set of fuzzy evaluation rules has been successfully integrated with ESCSD. Several examples are illustrated which show the agreeable result obtained from ESCSD.Item Discrete modeling of continuous interval using high-order integrators(1999-06-04) C.-C. Hsu; W.-Y. WangA higher-order integrator approach is proposed to obtain an approximate discrete-time transfer function for uncertain continuous systems having interval uncertainties. Thanks to simple algebraic operations of this approach, the resulting discrete model is a rational function of the uncertain parameters. The problem of non-linearly coupled coefficients of exponential nature in the exact discrete-time transfer function is therefore circumvented. Furthermore, interval structure of the uncertain continuous-time system is preserved in the resulting discrete model by using this approach. Formulas to obtain the lower and upper bounds for the discrete interval system are derived, so that existing robust results in the discrete-time domain can be easily applied to the discretized system. Digital simulation and design for the continuous-time interval plant can then be performed based on the obtained discrete-time interval modelItem On constructing fuzzy membership functions and applications in fuzzy neural networks(1993-10-29) C.-H. Wang; T.-T. Lee; W.-Y. Wang; P.-S. TsengA unified form of fuzzy membership functions, called as B-spline membership functions (BMFs) is proposed. The computer simulation of fuzzy control of a model car is considered as an application of BMFs in fuzzy neural networks. The example shows that the number of iterations for learning is substantially less than that of conventional methods.Item A GA-based indirect adaptive fuzzy-neural controller for uncertain nonlinear systems(2002-12-06) W.-Y. Wang; C.-C. Hsu; C.-W. Tao; Y.-H. LiIn this paper, a novel approach to adjust both the control points of B-spline membership functions (BMFs) and the weightings of fuzzy-neural networks using a reduced-form genetic algorithm (RGA) is proposed. Chromosomes consisting of both the control points of BMFs and the weightings of fuzzy-neural networks are coded as an adjustable vector with real number components and searched by the RGA. Moreover, we propose an application of the RGA in designing an RGA-based indirect adaptive fuzzy-neural controller (RIAFC) for uncertain nonlinear dynamical systems. The free parameters of the indirect adaptive fuzzy-neural controller can successfully be tuned on-line via the RGA approach. A supervisory controller is incorporated into the RIAFC to stabilize the closed-loop nonlinear system. An example of a nonlinear system controlled by RIAFC are demonstrated to show the effectiveness of the proposed method.Item H-inf.-observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems(1999-10-15) Y.-G. Leu; W.-Y. Wang; T.-T. LeeThis paper presents a method for designing an H∞-observer-based adaptive fuzzy-neural output feedback control law with on-line tuning of fuzzy-neural weighting factors for a class of uncertain nonlinear systems based on the H∞ control technique and the strictly positive real Lyapunov (SPR-Lyapunov) design approach. The H∞-observer-based output feedback control law guarantees that all signals involved are bounded and provides the modeling error (and the external bounded disturbance) attenuation with H∞ performance, obtained by a Riccati-Like equation. Besides, the H∞-observer-based output feedback control law doesn't require the assumptions of the total system states available for measurement and the uncertain system nonlinearities only restricted to the system output. Finally, an example is simulated in order to confirm the effectiveness and applicability of the proposed methodsItem Adaptive fuzzy-neural sliding mode control for a class of uncertain nonlinear dynamical systems(2001-03-24) W.-Y. Wang; M.-L. Chan; T.-T. LeeIn this paper, a novel design algorithm of adaptive fuzzy-neuralsliding mode control for a class of uncertain nonlinear dynamicalsystems is proposed to attenuate the effects caused by unmodeleddynamics, disturbances and approximate errors. Since fuzzy-neuralsystems can uniformly approximate nonlinear continuous functions toarbitrary accuracy, the adaptive fuzzy control theory is employed toderive the control law for a class of nonlinear system, with unknownnonlinear functions and disturbances. Moreover, the sliding modecontrol method is incorporated into the control law so that thederived controller is robust with respect to unmodeled dynamics,disturbances and approximate errors. To demonstrate the effectivenessof the proposed method, an example is illustrated in this paper.Item A composite controller for unknown nonlinear dynamical systems using robust adaptive fuzzy-neural control schemes(2000-09-27) W.-Y. Wang; C.-C. Hsu; Y.-G. LeuA robust adaptive fuzzy-neural control scheme for nonlinear dynamical systems is proposed to attenuate the effects caused by unmodeled dynamics, disturbance and modeling errors. A composite update law, which has a generalized form combining the projection algorithm modification and the switching-σ adaptive law, is used to tune the adjustable parameters for preventing parameter drift and confining states of the system into the specified regions. Moreover, a fuzzy variable structure control method is incorporated into the control law so that the derived controller is robust with respect to unmodeled dynamics, disturbances and modeling errors. Compared with previous control schemes for nonlinear systems, the magnitude of the control input by using the proposed approach is much smaller, which is a significant advantage in designing controllers for practical applications. To demonstrate the effectiveness and applicability of the proposed method, several examples are illustrated in the paper