電機工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/85
歷史沿革
本系成立宗旨在整合電子、電機、資訊、控制等多學門之工程技術,以培養跨領域具系統整合能力之電機電子科技人才為目標,同時配合產業界需求、支援國家重點科技發展,以「系統晶片」、「多媒體與通訊」、與「智慧型控制與機器人」等三大領域為核心發展方向,期望藉由學術創新引領產業發展,全力培養能直接投入電機電子產業之高級技術人才,厚植本國科技產業之競爭實力。
本系肇始於民國92年籌設之「應用電子科技研究所」,經一年籌劃,於民國93年8月正式成立,開始招收碩士班研究生,以培養具備理論、實務能力之高階電機電子科技人才為目標。民國96年8月「應用電子科技學系」成立,招收學士班學生,同時間,系所合一為「應用電子科技學系」。民國103年8月更名為「電機工程學系」,民國107年電機工程學系博士班成立,完備從大學部到博士班之學制規模,進一步擴展與深化本系的教學與研究能量。
News
Browse
4 results
Search Results
Item A high-efficiency, broadband and high output power PHEMT balanced K-band doubler with integrated balun(2006-12-15) Wen-Ren Lee,Shih-Fong Chao; Zuo-Min Tsai,Pin-Cheng Huang; Chun-Hsien Lien; Jeng-Han Tsai; Huei WangA high-efficiency and high output power K-band frequency doubler using InGaAs PHEMT power device is developed, which features high fundamental frequency rejection, high efficiency, good conversion gain over wide bandwidth, and high output power. A compact lumped rat-race hybrid and an output buffer amplifier are implemented on chip for a balanced design and high output power. The circuit exhibits measured conversions gain about 8 dB over the output frequencies from 12 to 22 GHz. The fundamental frequency suppression is better than 20 dB and the second harmonic saturation output power is higher than 12 dBm with a miniature chip size of 2 mm x 1 mm.Item A high-efficiency, broadband and high output power pHEMT balanced K-band doubler with integrated balun(2006-12-15) Wen-Ren Lee; Shih-Fong Chao; Zuo-Min Tsai; Pin-Cheng Huang; Chun-Hsien Lien; Jeng-Han Tsai; Huei WangA high-efficiency and high output power K-band frequency doubler using InGaAs PHEMT power device is developed, which features high fundamental frequency rejection, high efficiency, good conversion gain over wide bandwidth, and high output power. A compact lumped rat-race hybrid and an output buffer amplifier are implemented on chip for a balanced design and high output power. The circuit exhibits measured conversions gain about 8 dB over the output frequencies from 12 to 22 GHz. The fundamental frequency suppression is better than 20 dB and the second harmonic saturation output power is higher than 12 dBm with a miniature chip size of 2 mm x 1 mm.Item Design of a K-band Low Insertion Loss Variation Phase Shifter Using 0.18- μm CMOS Process(2010-12-10) Chung-Han Wu; Wei-Tsung Li; Jeng-Han Tsai; Tian-Wei HuangThis paper demonstrates a k-band low insertion loss variation phase shifter with over 330° continuously phase tuning range from 21-25GHz in standard 0.18-μm CMOS technology. This phase shifter is composed of a 180° continuously phase tuning range reflection type phase shifter (RTPS) and a 180° discrete switch type phase shifter (STPS). The measured phase shift range is 336° with low loss variation of 1.3dB at 22GHz and the maximum insertion loss is 16 dB at 22GHz. To the best of authors' knowledge, the MMIC is the lowest insertion loss variation phase shifter in CMOS technology at 22GHz.Item A 24-GHz 3.8-dB NF Low-Noise Amplifier with Built-In Linearizer(2010-12-10) Yen-Hung Kuo; Jeng-Han Tsai; Wei-Hung Chou; Tian-Wei HuangA K-band low-noise amplifier with built-in linearizer using 0.18-μm CMOS technology is presented in this paper. To achieve good linearity at high frequency, a distributed derivative superposition linearization technique is used. The measured results show that the improvement of IIP3 and IM3 are 5.3 dB and 10.6 dB at 24 GHz, respectively. The proposed LNA has a noise figure of 3.8 dB and a peak gain of 13.7 dB while consuming 18 mW dc power. To the best of our knowledge, this is the first LNA with a built-in linearizer above 20 GHz in CMOS.