理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
4 results
Search Results
Item 紫質衍生物之鋅離子感測劑暨大環紫質染料敏化太陽能電池之合成研究(2014) 劉珊彤; Liu, Shan-Tung鋅是人體內細胞中不可或缺的礦物質,已知的含鋅的酵素超過300多種,鋅穩定酶蛋白質的立體結構,或位於催化中心,他們是人體中許多化學反應的催化劑,因此,開發一鋅離子感測分子是極為重要的。本實驗室於 2009年發表第一個於實驗室中發展的類紫質衍生物m-benziporphodimethene,簡稱 BPDM,在之後的研究顯示,三吡咯環酮類(tripyrrinone)有潛力成為新一代廣用的螢光感測分子。本研究合成出兩個新的tripyrrinone衍生物作為螢光鋅離子感測分子,將三吡咯環酮類之環上末端α碳原子苯醯基化得到兩個新的tripyrrinone衍生物14-mesitoyl-5,10-dimesityl-1-oxo-tripyrrinato(L1)和14-benzoyl-5,10-diphenyl-1-oxo-tripyrrinato(L2),而將此兩化合物與鋅離子及各種金屬離子做選擇性的研究,可知化合物L2之鋅錯合物螢光強度優於化合物L1,故在偵測鋅離子時,可使用較低的濃度。比較化合物L1、L2與已發表的BPDM,鋅錯合物L1的吸收波長為594nm而鋅錯合物L2的吸收波長為608nm,相較於BPDM之吸收波長600nm,皆位於近紅外光的範圍。鋅錯合物L1的放射波長為659nm而鋅錯合物L2的放射波長為680nm,與BPDM之放射波長672nm做比較,鋅錯合物L2的放射波長在更長波長的位置,綜合比較得知,化合物L1及化合物L2在偵測鋅離子時有低能量的吸收及放射波長,顯示本研究化合物L1及化合物L2皆為優秀的近紅外光鋅離子感測分子。 在第二章的部份,本論文以合成22π電子的大環紫質pentaphyrin和sapphyrin作為合成目標。以[3+2]的合成策略,在適當路易士酸催化下將tripyrromethane和dipyrromethane組合成目標產物。將tripyrromethane(3)和dipyrromethane(15)合成,純化後可得pentaphyrin(16),其UV-Vis吸收光譜在356、 421、 513 nm,經過高解析ESI-MS鑑定可在m/z = 839.3744找到與化合物(16)相符的碎裂峰,其產率為1.33%;將tripyrromethane(8)和dipyrromethane(14)合成,純化後可得pentaphyrin(19),其UV-Vis吸收光譜在351、 424、 515 nm,經過高解析ESI-MS鑑定可在m/z = 971.3445找到與化合物(19)相符的碎裂峰;將tripyrromethane(8)和dipyrromethane(15)合成,其粗產物經過ESI-MS鑑定可在m/z = 927.3找到與pentaphyrin(17)相符的碎裂峰;將tripyrromethane(9)和dipyrromethane(15)合成,其粗產物經過ESI-MS鑑定可在m/z = 895.7找到與pentaphyrin (18)相符的碎裂峰;將tripyrromethane(9)和dipyrromethane(14)合成,純化後可得pentaphyrin(20),經過高解析ESI-MS鑑定可在m/z = 939.4274找到與化合物(20)相符的碎裂峰。同樣地,以[3+2]的合成策略在適當路易士酸催化下將tripyrromethane(8)、p-tolyaldehyde和2,2’-bipyrrole組合成目標產物,其粗產物經過ESI-MS鑑定可在m/z = 825.1找到與sapphyrin(21)相符的碎裂峰。Item 使用機器學習方法分析有機分子之螢光波長(2018) 羅少廷; Luo, Shao-Ting由於目前科技的進步相當快速,各項應用對於螢光材料的要求條件也日趨嚴苛,故針對有機分子進行波長的分析研究,以期望找到更好的有機螢光分子。 有機螢光材料具有相當廣泛的應用。有機螢光色素除了一般民生產品的螢光應用(如螢光紡織品、螢光油墨、螢光塑膠製品等)之外,有機螢光色素在螢光檢驗/生物探針/標示方面的應用可以說是非常廣泛。 因此,我們找尋了大量的有機分子來做分析研究。針對有機分子的結構特性,其中包括結構和電性組成的特徵值,來和螢光放光波長來進行機器學習和演算法的分析。以期望找到其中的關鍵因素,對於螢光分子材料的選擇和設計有更精準的方向。 此篇論文應用了目前正在發展中的機器學習方法來進行螢光分子的挑選,我們使用了Reaxys化學資料庫的分子結構檔案和波長數據,有了這兩個資訊;我們可以推展到機器學習的使用。 先將分子結構檔案(檔案類型: .smile)使用PaDEL結構描述符計算軟體,計算出大量結構檔轉換出的描述符,這些描述符包括電子結構和分子結構。有了大量的分子描述符,我們使用隨機森林演算法挑選出其中與波長數據關聯性較高的描述符,挑選了十個描述符,將這些重要性較高描述符與波長進行支持向量機回歸演算法,並建構出回歸模型,利用此回歸模型進行預測,並將預測波長與訓練用的Reaxys原始波長數進行線性比對,探討其精確性。Item 以機器學習方法分析結構與螢光波長之關係(2018) 周弈銘; Chou, Yi-Ming在定量構效關係的研究中,以機器學習方式進行資料挖掘的比例越來越高,而使用少量描述符對某種化學特性進行建模一直是化學訊息學中非常重要的一環,在擁有少量樣本以及大量從E-Dragon資料庫中取得的分子結構與特性相關的描述符數據後,特過機器學習的方式找出能夠對萘和香豆素之不同取代基化合物之螢光波長進行擬合的描述符和演算法,變成為本次實驗的目的,而透過四種不同的機器學習演算法 ( 決策樹回歸、隨機森林回歸、GBDT回歸、極端樹回歸 ) 之間投票和比較,從1664種描述符中取得R3m、Ss、R7u+三種描述符對螢光波長進行擬合;再透過測試集準確率的比較與檢驗,選出對於處理非線性問題具有良好功能的隨機森林回歸做為最後建模工具 ( 隨機森林回歸所使用的層數為19層、65個弱學習器 ) 。而此三種描述符則是在本實驗中做為具有預測螢光波長之描述符。 在建模之後,分析訓練集和測試集的平均絕對誤差以及誤差百分率,得到訓練集之平均絕對誤差為16奈米、誤差百分率為百分之四;而測試集的平均絕對誤差為26奈米、誤差百分率為百分之六。而在分析誤差結果時也發現,R3m和Ss之相關性程度取決於取代基的複雜程度,而不同的複雜程度會對不同光區的分子有著不同的影響。如果具有高度相關性,也就是取代基舉有多重鍵以及複雜性,則落在短波長區間(尤其是紫光)的預測能力較佳;若高度相關性的情況發生在長波長分子上,則模型的預測能力會變弱。Item Electroluminescence from a Conjugated Polymer Grafted with CdSe/ZnS: High Brightness and Improved Efficiency(Wiley, 2006-09-15) K.-B. Chen; M.-H. Chen; S.-H. Yang; C.-H. Hsieh; C.-S. Hsu; Chia-Chun Chen; H.-J. ChienA new series of sulfide-substituted poly(1,4-phenylene vinylene) derivatives (S1PPV–S3PPV) with different composition ratios were successfully synthesized via the Gilch route. The CdSe/ZnS were grafted to the sulfur atoms by ligand exchange reaction. The grafted CdSe/ZnS contents were determined from TGA analysis to be from 4.6 to 37.8%. A new peak at 1151 cm−1 formed in FT-IR after ligand exchange, which is attributed to the force formation between sulfur and CdSe. The GPC results show that the molecular weights of final polymers became higher after ligand exchange. Thin films of obtained polymers emitted bright green and yellow light with the max emission peak located from 546 to 556 nm. Double-layer LEDs with an ITO/PEDOT/polymer/Ca/Al configuration were fabricated to evaluate the potential use of these polymers. The turn-on voltages of the devices were about 4–5 V. As the CdSe/ZnS content increased in grafted polymers, the device performance was significantly enhanced as compared to pristine polymers. In the case of S3PPV, the double-layer device showed a maximum luminance of 6073 cd/m2 with a current yield of 0.82 cd/A. The maximum luminance and current yield was enhanced to 13,390 cd/m2 and 2.25 cd/A by grafting CdSe/ZnS onto polymers.