理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
8 results
Search Results
Item 半導體材料GaSe1-xSx ( 0 ≦ x ≦ 1)之光譜性質研究(2010) 黃姿方; Tz-Fang Huang我們研究非線性光學半導體GaSe1-xSx (x = 0.00、0.01、0.03、0.14、0.18、0.26、0.37 及 1.00 ) 單晶塊材的光譜性質。首先,GaSe的拉曼散射光譜顯示四個拉曼活性振動模,其頻率位置在134 cm-1、212 cm-1、250 cm-1及307 cm-1,拉曼峰頻率位置隨著摻硫離子濃度上升而有藍移的現象;當x ≧ 0.18 時,我們觀察到多了一個160 cm-1拉曼峰,隨著摻雜硫離子濃度增加而對應到GaS的188.5 cm-1拉曼峰,這些拉曼散射光譜的變化與GaSe1-xSx層狀堆疊結構的改變有緊密的關聯性。此外,我們觀察到光激螢光光譜在x ≧ 0.18 時,其螢光峰的半高寬明顯變寬,且峰值的光子能量大於能隙,推測此時樣品與GaS同屬間接半導體,而多出來的能量即為聲子放射所造成。 我們進一步研究GaSe1-xSx的室溫全頻光譜與變溫穿透光譜,其中紅外聲子吸收峰隨著摻雜硫離子濃度上升而有藍移現象;由於摻雜硫離子後層間距離縮小,電子與離子作用距離較短因此作用力較強,所以造成能隙上升的現象;我們觀察到不同硫離子濃度樣品能隙的溫度變化率,在x ≧ 0.18 時略為上升後下降與低摻雜樣品的變化不同,此結果亦呼應堆疊結構的變化。最後,我們藉由使用第一原理理論計算GaSe在Γ點的聲子振動特性,並與拉曼散射光譜實驗及紅外光活性振動的實驗結果進行比較。Item 綠色螢光奈米鑽石的製備與生物應用(2008) 毛怡雯; Yi-Wen Mau本篇文章的重點在說明綠色螢光奈米鑽石(簡稱為gFNDs)的製備與做為生物標記應用的特性。 天然奈米鑽石晶體經由能量40keV的氦離子束或是3MeV的氫離子束衝擊及高溫(800℃)退火處理後,在晶格內部會產生很多N-V-N(H3 center)排列情形,而形成綠色螢光奈米鑽石。在以高能量離子束照射前,利用FTIR偵測天然鑽石晶體,藉由1282cm-1 特性峰來推算氮的含量約為900ppm左右。再利用UV-Vis在液態氮低溫中偵測經過高能量粒子照射及退火處理的鑽石,可以得到吸收光譜圖。由實驗結果會發現在470nm左右會有吸收,這和H3吸收位置是相同的。並利用吸收光譜中H3的zero-phonon line(ZPL,503nm)強度計算,可以知道H3 density是1.7×1018 centers/cm3(10ppm)。再測其螢光光譜,發現以藍光激發會放出綠色螢光。 推論並證實奈米鑽石粉末經過相同的處理程序後,也會有高濃度的H3 center結構產生。因此利用共聚焦式螢光顯微鏡(confocal)和流式細胞儀(flow cytometry)來證明75nm的綠色螢光奈米鑽石可以經由細胞吞噬(endocytosis)進入活HeLa細胞中,而能做為一新穎的奈米螢光標記。Item 含吡啶醯胺配子之二價銅錯合物的合成、結構及性質研究(2008) 洪郁馨為了研究以二價銅為主體之分子開關,本論文報告了一系列N-(2-甲基吡啶)醯胺衍生之雙牙及四牙配子合成:包含N-吡啶-2-甲基苯甲醯胺[pmb = N-{(2-pyridyl)methyl}benzamide],N,N’-雙吡啶-2-甲基鄰苯二甲醯胺 [bpmi = N,N’-bis{(2-pyridyl)methyl)}isophthalamide],N,N’-雙吡啶-2-甲基丁二醯胺 [bpms = [N,N’-bis{(2-pyridyl)methyl}succinamide],N,N’-雙吡啶-2-甲基戊二醯胺[bpmg = N,N’-bis{(2-pyridyl)methyl}glutaramide]以及N,N’-雙吡啶-2-甲基己二醯胺[bpma = N,N’-bis{(2-pyridyl)methyl}adipamide]。 進一步利用此系列配子合成一系列之二價銅錯合物,包含: (一) 拔氫前之五種錯合物:單核二價銅錯合物 [Cu(pmb)2(DMF)](ClO4)2 (1) 和二價銅的配位聚合物 {[Cu(bpmi)(ClO4)](ClO4)}n (2)、{[Cu(bpms)(H2O)](ClO4)2}n (3)、{[Cu(bpmg)(DMF)](ClO4)2}n (4)及 {[Cu(bpma)(DMF)2](ClO4)2}n (5),這些錯合物都已經完成X-光繞射結構解析,顯示配子是利用吡啶-N及羰基-O配位於二價銅上。 (二) 拔氫後之錯合物:單核二價銅錯合物[Cu(bpms-2H)(H2O)] (6) 及雙核二價銅錯合物 [Cu2(bpmi-2H)2] (7),經X-光繞射結構解析,顯示配子的醯胺官能基的氫已完全被拔除,並轉變為吡啶-N及醯胺-N之配位型態。同時,紫外光-可見光譜也顯示上述錯合物可經由加入酸/ 鹼進行四種可逆的結構轉換,也就是單核錯合物與單核錯合物、多核聚合物與單核錯合物、多核聚合物與雙核錯合物,以及多核聚合物與多核聚合物之間的可逆轉換。另外藉由引進發光團,如courmarine 343 之陰離子亦可以得到高效率之螢光分子開關系統,其中螢光淬熄,可由[Cu(pmb)2(OAc)](ClO4).(MeOH)(H2O)0.5 (1a) 和[Cu(pmb)2(C6H5COO)](ClO4) (1b) X-光繞射結構解析看出端倪,由於香豆素 343本身也具有酸根構造,因此其陰離子很有可能發生類似行為,直接配位在二價銅離子上,而使螢光淬熄,並且不影響錯合物(2)~(5)在溶液中呈現配位聚合物的狀態。Item 紫質衍生物之鋅離子感測劑暨大環紫質染料敏化太陽能電池之合成研究(2014) 劉珊彤; Liu, Shan-Tung鋅是人體內細胞中不可或缺的礦物質,已知的含鋅的酵素超過300多種,鋅穩定酶蛋白質的立體結構,或位於催化中心,他們是人體中許多化學反應的催化劑,因此,開發一鋅離子感測分子是極為重要的。本實驗室於 2009年發表第一個於實驗室中發展的類紫質衍生物m-benziporphodimethene,簡稱 BPDM,在之後的研究顯示,三吡咯環酮類(tripyrrinone)有潛力成為新一代廣用的螢光感測分子。本研究合成出兩個新的tripyrrinone衍生物作為螢光鋅離子感測分子,將三吡咯環酮類之環上末端α碳原子苯醯基化得到兩個新的tripyrrinone衍生物14-mesitoyl-5,10-dimesityl-1-oxo-tripyrrinato(L1)和14-benzoyl-5,10-diphenyl-1-oxo-tripyrrinato(L2),而將此兩化合物與鋅離子及各種金屬離子做選擇性的研究,可知化合物L2之鋅錯合物螢光強度優於化合物L1,故在偵測鋅離子時,可使用較低的濃度。比較化合物L1、L2與已發表的BPDM,鋅錯合物L1的吸收波長為594nm而鋅錯合物L2的吸收波長為608nm,相較於BPDM之吸收波長600nm,皆位於近紅外光的範圍。鋅錯合物L1的放射波長為659nm而鋅錯合物L2的放射波長為680nm,與BPDM之放射波長672nm做比較,鋅錯合物L2的放射波長在更長波長的位置,綜合比較得知,化合物L1及化合物L2在偵測鋅離子時有低能量的吸收及放射波長,顯示本研究化合物L1及化合物L2皆為優秀的近紅外光鋅離子感測分子。 在第二章的部份,本論文以合成22π電子的大環紫質pentaphyrin和sapphyrin作為合成目標。以[3+2]的合成策略,在適當路易士酸催化下將tripyrromethane和dipyrromethane組合成目標產物。將tripyrromethane(3)和dipyrromethane(15)合成,純化後可得pentaphyrin(16),其UV-Vis吸收光譜在356、 421、 513 nm,經過高解析ESI-MS鑑定可在m/z = 839.3744找到與化合物(16)相符的碎裂峰,其產率為1.33%;將tripyrromethane(8)和dipyrromethane(14)合成,純化後可得pentaphyrin(19),其UV-Vis吸收光譜在351、 424、 515 nm,經過高解析ESI-MS鑑定可在m/z = 971.3445找到與化合物(19)相符的碎裂峰;將tripyrromethane(8)和dipyrromethane(15)合成,其粗產物經過ESI-MS鑑定可在m/z = 927.3找到與pentaphyrin(17)相符的碎裂峰;將tripyrromethane(9)和dipyrromethane(15)合成,其粗產物經過ESI-MS鑑定可在m/z = 895.7找到與pentaphyrin (18)相符的碎裂峰;將tripyrromethane(9)和dipyrromethane(14)合成,純化後可得pentaphyrin(20),經過高解析ESI-MS鑑定可在m/z = 939.4274找到與化合物(20)相符的碎裂峰。同樣地,以[3+2]的合成策略在適當路易士酸催化下將tripyrromethane(8)、p-tolyaldehyde和2,2’-bipyrrole組合成目標產物,其粗產物經過ESI-MS鑑定可在m/z = 825.1找到與sapphyrin(21)相符的碎裂峰。Item 使用機器學習方法分析有機分子之螢光波長(2018) 羅少廷; Luo, Shao-Ting由於目前科技的進步相當快速,各項應用對於螢光材料的要求條件也日趨嚴苛,故針對有機分子進行波長的分析研究,以期望找到更好的有機螢光分子。 有機螢光材料具有相當廣泛的應用。有機螢光色素除了一般民生產品的螢光應用(如螢光紡織品、螢光油墨、螢光塑膠製品等)之外,有機螢光色素在螢光檢驗/生物探針/標示方面的應用可以說是非常廣泛。 因此,我們找尋了大量的有機分子來做分析研究。針對有機分子的結構特性,其中包括結構和電性組成的特徵值,來和螢光放光波長來進行機器學習和演算法的分析。以期望找到其中的關鍵因素,對於螢光分子材料的選擇和設計有更精準的方向。 此篇論文應用了目前正在發展中的機器學習方法來進行螢光分子的挑選,我們使用了Reaxys化學資料庫的分子結構檔案和波長數據,有了這兩個資訊;我們可以推展到機器學習的使用。 先將分子結構檔案(檔案類型: .smile)使用PaDEL結構描述符計算軟體,計算出大量結構檔轉換出的描述符,這些描述符包括電子結構和分子結構。有了大量的分子描述符,我們使用隨機森林演算法挑選出其中與波長數據關聯性較高的描述符,挑選了十個描述符,將這些重要性較高描述符與波長進行支持向量機回歸演算法,並建構出回歸模型,利用此回歸模型進行預測,並將預測波長與訓練用的Reaxys原始波長數進行線性比對,探討其精確性。Item 以機器學習方法分析結構與螢光波長之關係(2018) 周弈銘; Chou, Yi-Ming在定量構效關係的研究中,以機器學習方式進行資料挖掘的比例越來越高,而使用少量描述符對某種化學特性進行建模一直是化學訊息學中非常重要的一環,在擁有少量樣本以及大量從E-Dragon資料庫中取得的分子結構與特性相關的描述符數據後,特過機器學習的方式找出能夠對萘和香豆素之不同取代基化合物之螢光波長進行擬合的描述符和演算法,變成為本次實驗的目的,而透過四種不同的機器學習演算法 ( 決策樹回歸、隨機森林回歸、GBDT回歸、極端樹回歸 ) 之間投票和比較,從1664種描述符中取得R3m、Ss、R7u+三種描述符對螢光波長進行擬合;再透過測試集準確率的比較與檢驗,選出對於處理非線性問題具有良好功能的隨機森林回歸做為最後建模工具 ( 隨機森林回歸所使用的層數為19層、65個弱學習器 ) 。而此三種描述符則是在本實驗中做為具有預測螢光波長之描述符。 在建模之後,分析訓練集和測試集的平均絕對誤差以及誤差百分率,得到訓練集之平均絕對誤差為16奈米、誤差百分率為百分之四;而測試集的平均絕對誤差為26奈米、誤差百分率為百分之六。而在分析誤差結果時也發現,R3m和Ss之相關性程度取決於取代基的複雜程度,而不同的複雜程度會對不同光區的分子有著不同的影響。如果具有高度相關性,也就是取代基舉有多重鍵以及複雜性,則落在短波長區間(尤其是紫光)的預測能力較佳;若高度相關性的情況發生在長波長分子上,則模型的預測能力會變弱。Item 以理論角度探討有機發光二極體使其有效增加三重態激子轉換至單重態與應用(2015) 周晁霈; Chou, Tsao-Pei在光電元件中,有機金屬錯合物佔據大部分的市場,但也造成價格不菲主因。反觀近幾年,有機材料的部分,純的有機系統之熱活化行延遲螢光 性質與設計及在光電應用也蓬勃發展起來。為了深入解有機分子材料的光物理特性,可以透過理論計算的方式來研究,使其在未來應用上有重大突破。 本論文將探討有機分子系統之光物理性質,特別針對有機分子中透過異碳原子(如:硫、氧)所產生Tm到Sn之間逆向系統間跨越(Reverse Intersystem crossing,RISC)而形成TADF機制之影響參數進行研究。高原子序之異碳原子的重原子效應產生之強自旋-軌道交互作用力 (spin -orbit coupling, SOC),可以增強逆向系統間跨越的效率,使其有利於讓三重態激子回到單重態放出螢光。若能有效的提升逆向系統間跨越的效率,就可間接提高有機系統放光的量子產率,因此RISC速率的 大小是很多光電材料應用上關鍵因素。本篇將對各種不同類別的包含異 碳原子之分子系統進行討論,以理論計算方法預測這些異碳原子對系統的SOC與ΔEST的影響,並與分子的結構影響做比較。最終希望能找出影響 有機系統關鍵因素且創造出一個具有小的ΔEST與較高的SOC。我們主要以 氧(Oxygen)、硫(Sulfur)及硼(Boron)等含異碳原子系統為討論對象,探討我們將著重在電荷轉移激發態(CT)、nπ*和ππ*激發態的定量與定性分析上 。 本篇將針對以下幾點進行討論,包含電子結構、鍵長、電子躍遷性質、單重態與三重態能階差等,也對高TADF放光效率的有機分子系統進行一系列的探討。Item 半導體螢光奈米粒子在生物上的應用(桃園縣中壢市 : 中華民國光電學會, 2003-09-01) 楊正義; 吳仁家; 陳家俊; 胡焯淳廿一世紀新科技主流涵蓋生物基因、網路技術及微小化,其中微小化一「奈米技術」(nanotechnology)已成為科技及工業界新寵,備受各界關注。本文將概要地介紹螢光半導體奈米材料與生物技術的結合,並分別介紹應用上的實例。最後將簡單地敘述奈米粒子未來在生物科技上的發展趨勢及潛力。