機電工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/84
系所沿革
為迎合產業機電整合人才之需求,本校於民國 91年成立機電科技研究所,招收碩士班學生;隨後並於民國93年設立大學部,系所整合為「機電科技學系」,更於101學年度起招收博士班學生。103學年度本系更名為「機電工程學系」,本系所之發展方向與目標,係配合國家政策、產業需求與技術發展趨勢而制定。本系規劃專業領域包含「精密機械」及「光機電整合」 為兩大核心領域, 使學生不但學有專精,並具跨領域的知識,期能強化學生之應變能力,以適應多元變化的明日社會。
教學目標主要希望教導學生機電工程相關之基本原理與實務應用的專業知能,並訓練學生如何運用工具進行設計、執行、實作與驗證各項實驗,以培養解決機電工程上各種問題所需要的獨立思考與創新能力。
基於建立系統性的機電工程整合教學與研究目標,本系學士班及研究所之教育目標如下:
一、學士班
1.培育具備理論與實作能力之機電工程人才。
2.培育符合產業需求或教育專業之機電工程人才。
3.培育具備人文素養、專業倫理及終身學習能力之機電工程人才。
二、研究所
1.培育具備機電工程整合實務能力之專業工程師或研發人才。
2.培育機電工程相關研究創新與產業應用之專業工程師或研發人才。
3.培育具備人文素養、專業倫理及終身學習能力之專業工程師或研發人才。
News
Browse
3 results
Search Results
Item 界面活性劑對電化學/機械複合剝離製程之石墨烯產率與品質影響(2016) 陳姿穎; Chen, Zi-Ying本研究結合液相剝離法中的電化學剝離法與剪切剝離法(Shear exfoliation),另外輔以界面活性劑的添加,企圖以此製程技術提升產率,期望解決電化學剝離法無法連續性生產的缺點。傳統電化學剝離法多是以塊狀、棒狀、箔片狀石墨作為研究材料,一旦電解剝離完後,其剩下非石墨烯之產物(細小石墨微粒)無法再反覆剝離成為石墨烯,只能丟棄造成浪費或另尋其他用途。然而,本研究所提出的實驗方法可以連續性生產,而且以較低成本之天然石墨顆粒為剝離原料,非石墨烯之產物也能夠重複剝離。本研究整合兩種技術,在剪切高速剝離處理前,以施加電壓進行電化學離子插層處理,增加石墨層與層間距離而使剪切剝離較為容易,以獲得較大尺寸的石墨烯薄片,藉由上述的複合方式來達到提升產率與品質之目標。本研究透過X光粉末繞射儀(XRD)分析樣品結晶,判斷是否為石墨烯,再輔以拉曼光譜分析儀(Raman spectroscope)確認樣品有無缺陷,另以化學分析影像能譜儀(ESCA)判別氧碳值,另藉由掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)及原子力顯微鏡(AFM)等儀器設備,評估石墨烯片的大小、表面形貌及厚度均勻性。本研究成功藉由此製程製備石墨烯片,具有低成本與高產量的優勢,期許未來可應用於導電漿料、透明導電層、超級電容或鋰電池等開發。本研究藉由整合電化學插層法、剪切剝離法與複合式界面活性劑的使用,成功將石墨粉剝離為石墨烯,剝離後石墨烯的氧碳比值(O/C)提升至2.39,經過後處理之氧碳比值降為1.37,接近初始石墨粉氧碳比1.02,剝離後經酒精清洗的石墨烯缺陷程度ID/IG為0.899,再經過高溫處理的缺陷程度為0.630,亦較近於初始材料石墨粉之缺陷程度0.604,剝離後石墨烯層數多為2奈米,經兩次反覆實驗後,寡層石墨烯的整體產率為72.48 %,意為投入10克石墨粉,可獲得7.248克之寡層石墨烯。Item Fabrication of micro free standing structure in p-type silicon using an electrochemical etching technique(2005-11-25) 楊啟榮; 林明憲; 湯杜翔; 鍾武雄; Yang; Chii-Rong; Lin; Ming-Hsien; Tang; Du-Hsiang; Chung; Wu-HsungAn electrochemical etching technique is suitable to the application of MEMS silicon bulk micromachining. In this work, a HF-ethanol-H2O based electrolyte, modified by adding anionic surfactant MA, was used to evaluate the etching properties of p-type silicon in electrochemical etching. The high-aspect-ratio trench structures and free-standing beams were also fabricated with only single step mask. The results indicate that the pattern of initial pits significantly affects the etching rate of the macropores and the morphology of the etched trench structures. The surfactant MA can drastically reduce the roughness and significantly affect the topology of the etched surface. Because the contact angle of HF-ethanol-H2O-MA based electrolyte is about 6.4 times lower than that in HF-ethanol-H2O based electrolyte. However, the etching rate in MA-added electrolyte is lower than that obtained in electrolyte without MA. Moreover, the wall width of trenches is kept on about 2μm independently of the current density and the width of etching mask. Furthermore, the etched depth is proportional to etching time, but the etching rate is inverse proportional to the etching time. Because the etched depth grows deeper, the concentration of electrolyte at the pore tip decreases linearly with length. The trench structures with aspect ratio of around 40 have been obtained in this study. The free-standing beams are also fabricated with only one mask by controlling the current density.Item Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions(Elsevier, 2005-03-28) Yang, Chii-Rong; Chen, Po-Ying; Yang, Cheng-Hao; Chiou, Yuang-Cherng; Lee, Rong-TsongThree ion-typed surfactants, including anionic SDSS, cationic ASPEG and non-ionic PEG, which are powerful wetting agents in electroforming, were added to 30 wt.% KOH and 10 wt.% TMAH solutions to evaluate the silicon anisotropic etching properties of the (1 0 0) silicon plane without agitation and no IPA additive. The results indicate that the surfactant ion-types are not the main determinants of the silicon anisotropic etching properties in KOH and TMAH solutions. The wetting capacity of the etchants causes the efficacies of the etchants on the roughness to follow the order anionic SDSS, cationic ASPEG, non-ionic PEG and pure solution in KOH solutions, and the order cationic ASPEG, non-ionic PEG, pure solution and anionic SDSS in TMAH solutions, especially at higher etching temperatures. Moreover, the chemical activities of etchants differ so that the etching rates follow the order anionic SDSS, pure solution, non-ionic PEG and cationic ASPEG in KOH solutions, and the order anionic SDSS, pure solution, cationic ASPEG and non-ionic PEG in TMAH solutions at a given etching temperature. Anionic SDSS has the highest etching rate of 5.4 μm/min and the lowest surface roughness of 7.5 nm, which are about 1.69 times higher and 7.87 times lower, respectively, than those obtained in pure KOH solution. The cationic ASPEG has a reasonable etching rate of 0.7 μm/min and the lowest surface roughness of 4 nm in TMAH solutions for etching temperature of 100 °C. Furthermore, the surfactants used here were demonstrated to allow the utilization of usual mask materials and anionic SDSS can even increase the selectivity of silicon dissolution toward silicon dioxide in KOH solutions. A drastic reduction of the undercutting of the convex corners is obtained in TMAH solutions with non-ionic PEG surfactant. This finding reveals that the addition of non-ionic PEG to TMAH solutions is ideal when accurate profiles are required without extremely deep etching.