機電工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/84

系所沿革

為迎合產業機電整合人才之需求,本校於民國 91年成立機電科技研究所,招收碩士班學生;隨後並於民國93年設立大學部,系所整合為「機電科技學系」,更於101學年度起招收博士班學生。103學年度本系更名為「機電工程學系」,本系所之發展方向與目標,係配合國家政策、產業需求與技術發展趨勢而制定。本系規劃專業領域包含「精密機械」及「光機電整合」 為兩大核心領域, 使學生不但學有專精,並具跨領域的知識,期能強化學生之應變能力,以適應多元變化的明日社會。

教學目標主要希望教導學生機電工程相關之基本原理與實務應用的專業知能,並訓練學生如何運用工具進行設計、執行、實作與驗證各項實驗,以培養解決機電工程上各種問題所需要的獨立思考與創新能力。

基於建立系統性的機電工程整合教學與研究目標,本系學士班及研究所之教育目標如下:

一、學士班

1.培育具備理論與實作能力之機電工程人才。

2.培育符合產業需求或教育專業之機電工程人才。

3.培育具備人文素養、專業倫理及終身學習能力之機電工程人才。

二、研究所

1.培育具備機電工程整合實務能力之專業工程師或研發人才。

2.培育機電工程相關研究創新與產業應用之專業工程師或研發人才。

3.培育具備人文素養、專業倫理及終身學習能力之專業工程師或研發人才。

News

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    飛秒雷射製作可撓性聚醯亞胺異質結構元件於氣體檢測之研究
    (2022) 葉力維; Yeh, Li-Wei
    本研究是利用超快飛秒雷射(Ultrafast femtosecond laser)之超短脈衝(Ultrashortpulses)的特性,在聚醯亞胺(Polyimide, PI)薄膜基材,製作指叉狀電極結構(Interdigitated electrode structures)元件於氣體檢測(Gas detection),該超快雷射製程具較小熱影響區(Heat-affected zone),以能進行可撓性基材之結構製作。為增加此元件感測之靈敏度,本研究亦利用水熱法製成氧化鋅(Zinc oxide)奈米線結構(Nanowires),在飛秒雷射製程製作之石墨烯PI電極元件上,以成型新穎複合結構元件於氣體檢測,以增加感測響應值。本研究顯示該可撓性元件可避免受力而導致斷裂、破壞的現象,且當彎曲曲率半徑小於6 mm響應值仍屬穩定(誤差值±3%)。元件設計的微型加熱器方面顯示,在一氧化碳(Carbon monoxide, CO)氣體從室溫到85.6°C可縮短恢復時間為86.2sec;甲烷(Methane, CH4)氣體則從室溫到約86.8°C可縮短恢復時間為117.2 sec。因此,在氣體感測元件方面顯示,一氧化碳和甲烷氣體檢測於200濃度200 ppm,其元件在甲烷與一氧化碳氣之電性響應值會分別為20.7 %和120.8 %。藉此,本研究證明氧化鋅/石墨烯可撓性微性加熱元件於一氧化碳和甲烷氣體濃度具有良好的恢復性,分別在1000 sec和1600 sec可恢復至初始電阻值,且該元件靈敏度則在加熱升溫環境會別為0.6728與0.0434為最佳。透過此研究,將可提供飛秒雷射製程於氣體檢測元件之應用參考。 關鍵詞: 飛秒雷射、可撓性元件、石墨烯、奈米線、氣體檢測
  • Item
    以超快雷射製作石墨烯/二硫化鉬元件結構於氣體檢測
    (2021) 韓同耀; Han, Tong-Yao
    本研究利用超快雷射製程 (Ultrafast laser processing technique)進行製作設計的微型加熱感測元件及其特性探討,同時整合二硫化鉬(Molybdenum disulfide, MoS2)材料,以開發異質結構(Heterostructure)元件於氣體檢測(Gas detection)應用。本研究是採以有限元素法(Finite element method, FEM),在設計的串/並聯電路之微加熱結構元件,進行熱性能和電路的電流密度之預測。在實驗方面,是利用超快雷射直寫技術於石墨烯(Graphene)薄膜,其固定重複率為 300 kHz,在振鏡掃描速度為 300 mm/s及雷射能量密度為 2.19 J/cm2,進行製程路徑次數 2 次後,完成不同寬度的薄膜電極元件製作及其檢測元件特性分析。研究結果顯示:在施加相同電壓條件下,串聯電路結構的微加熱器穩態溫度較低,且穩態溫度受電路形狀的影響較大,其原因是串聯電路結構的電阻會明顯大於並聯電路結構,因此該元件通過的電流較小,產生的焦耳熱也較小。此外,本研究於石墨烯感測元件搭配MoS2溶液,以滴鍍(Drop casting)技術,開發MoS2/石墨烯微型加熱感測元件,並比較石墨烯微型加熱感測元件,進一步進行氣體檢測之靈敏度探討。本研究結果在石墨烯微型加熱感測元件方面,顯示在溫度於92 oC時,該元件偵測氣體濃度於100、300和500 ppm時,氣體響應值(Response)會分別為1.4 %、7.2 %和17.7 %。本研究結果在MoS2/石墨烯微型加熱感測元件方面,顯示在溫度於92 oC時,該元件偵測氣體濃度於100、300和500 ppm時,氣體響應值分會別為1.7 %、4.9 %和12.3 %。因此,本研究證明MoS2/石墨烯微型加熱感測元件具有良好的恢復性,在50 s內該元件的檢測電阻可以恢復至原始電阻。
  • Item
    碳基高性價比散熱塗料之製備技術開發
    (2021) 洪大正; Hong, Da-Jheng
    隨著技術的進步,電子元件的效能不斷的增加,而體積亦朝向小型化發展,無可避免地,如何的幫助元件有效地散熱將構成挑戰。散熱塗層( Heat dissipating coat)由高分子材料構成基底,添加高熱輻射係數與高導熱性質的填料,能夠快速將所塗佈物體所產生的熱傳導至高熱輻射係數的塗層中,使得物體藉由熱輻射傳導至環境中的熱能大幅提升,屬於被動散熱的一種,設計散熱系統時也能與散熱鰭片搭配而獲得更好的效果,提供設計人員更多樣化的選擇。而目前的文獻較常見為使用通稱為奈米碳材的石墨烯以及奈米碳管作為填料,再藉由添加陶瓷粉末形成協同效應(Synergetic effect)來促進輻射散熱的效果。雖被證實有效,但受限於奈米碳材的成本高昂且不易大量生產,使得散熱塗料的推廣使用不易。此研究為奠基於本實驗室之前的成果,將原本的陶瓷添加物改為氧化鋁粉末,並改以常見且成本較低廉的碳黑、石墨粉和活性碳粉作為促進散熱的填料製備壓克力散熱塗料,再將完成的塗料噴塗於鋁片之上做為10 W的LED模組之散熱片,經實驗觀察在適當的添加量下最高能達到13.2 °C的降溫,而相比之下以1:1之重量比的石墨烯和多壁奈米碳管混合物做為填料的散熱塗料的試片最高降溫為13.7 °C,相差僅為0.5 °C,由此實驗結果可知本研究成功開發了一種高性價比的散熱塗料,並在成本上能滿足消費級產品的需求。
  • Item
    以固態電解質與多孔矽電極實現抗壓耐震型超級電容之技術開發
    (2020) 陳信融; Chen, Shin-Rung
    超級電容(Supercapacitors)擁有快速充放電、功率密度高、元件壽命長等優點,可應用於行動通訊、車輛運輸、智慧電網等領域。然而,目前超級電容的製作技術中,許多是利用平面金屬電極,再加上碳海綿、碳氣凝膠或電紡絲碳纖維等3D多孔碳結構,意圖以增加碳活性材料之比表面積的方式,達到提高電容器功率密度之目的。然而,這些平面金屬加上3D多孔碳結構的電極,當元件受到大應力、高速撞擊與震動的作用下,這種平面金屬/多孔碳結構將產生嚴重的的脫層或塌陷而失效,使其無法應用於國防工業、航天太空、電動載具等抗壓耐震需求之超級電容上。 因此,本研究將使用三種製程方式製作矽基電極,第一種製程只使用光輔助電化學蝕刻(Photo-assisted electrochemical etching, PAECE)製程,在參數為氫氟酸10 wt% 界面活性劑酒精1 wt%、偏壓為3.5 V、蝕刻時間為8 hr的情況下,可以得到深度約為222 μm的隨機矽孔洞結構;第二種製程為使用黃光製程與反應性離子蝕刻技術,事先定義出陣列圖案的蝕刻窗後,再以光輔助電化學蝕刻技術製作,在參數為氫氟酸2.5 wt%、界面活性劑 DC 1 wt%、偏壓3 V、蝕刻時間 2 hr之下完成深度約為162 μm之矽孔洞結構;第三種製程為先使用ICP-RIE技術製作巨孔洞陣列結構,再以光輔助電化學蝕刻技術粗化孔洞結構內壁,參數為氫氟酸2.5 wt%、界面活性劑 DC 5 wt%、偏壓1 V、蝕刻時間 2 hr。三種多孔矽結構完成後,分別使用化學氣相沉積(Chemical vapor deposition)在其表面生成碳膜,此可鈍化多孔矽表面電荷陷阱(Surface charge traps)並增加導電性,再將混拌石墨烯薄片(graphene)、二氧化釕(RuO2)、高分子材料(PVA)的酸性電解液,以真空抽氣方式滲入多孔結構中並固化,以實現高抗壓耐震性超級電容之開發,後續再利用恆電位儀進行C-V特性曲線(C-V curve)量測、恆電流充放電曲線(Galvanostatic charge/discharge curve)等量測分析。由於使用第二種製備法之矽基電極在量產結構時遇到稜線蝕刻過度的問題,而不適用於超級電容之製作,第三組製程則是在組裝測試之後,C-V曲線中的電壓與電流呈線性關係,恆電流充放電曲線則是出現了充電進去之後電卻放不掉的現象,代表電容內阻過高,從這兩點推測選用之晶片阻值過高(>4000 –cm)導致電容無法正常運作,因此本研究先將重心放在第一種製程使用單純光輔助電化學蝕刻製作矽基電極,量測後發現在混入石墨烯 5 wt%以及二氧化釕 5 wt%的固態超級電容,在0.127 A/g的電流密度下graphene/RuO2的電容性能為1.5 F/g,並且經由50次循環充放電之後,仍保有88%的電容保持率,在承受30 g的加速度之下依舊保擁有95%的電容保持率,電容需負荷超過24.5 KPa之壓應力(2×2 cm2的電容承受1 kg)後才會破損,在此狀態下電容值仍然保有原有性能之55%。
  • Item
    應用超快雷射技術於石墨烯奈米銀金屬粒/聚醯亞胺複材之熱檢測元件探討
    (2020) 蕭鈞庭; Hsiao, Chun-Ting
    本研究利用超快雷射製程技術(Ultrafast laser processing technique)進行微結構(Microstructures)之熱元件(Heating device)製作及其特性之探討,以應用於氣體檢測(Gas detection)。在本研究中會使用超快雷射直寫技術分別於石墨烯(Graphene)/聚醯亞胺(Polyimide, PI)基材及奈米銀(Silver nanoparticles, AgNPs)/石墨烯/PI基材進行雷射測試,固定重複率為300 kHz、加工次數3次下,在振鏡掃描速度為500 mm/s及雷射能量密度為2.45 J/cm2,完成薄膜製程及元件製作,並依此參數製作不同寬度熱檢測元件。研究顯示在相同寬度5 mm下,石墨烯/PI基板給予功率6.10 W時,最高溫約134 ℃;奈米銀/石墨烯/PI基板給予功率5.83 W時,最高溫約104 ℃。另外,在相同寬度6 mm下,石墨烯/PI基板給予功率為6.10 W時,最高溫約110 ℃;奈米銀/石墨烯/PI基板給予功率4.48 W時,最高溫約113 ℃。進一步本研究顯示在寬度6 mm之奈米銀/石墨烯/PI基材熱檢元件,能給予較少功率,產生出100 ℃以上溫度,且基材彎曲90 o時,溫度仍能維持在100 ℃以上。同時,本研究搭配設計所製作的指叉狀(Interdigitated)電極元件進行氣體量測,研究顯示在一氧化氮(Nitric oxide, NO)濃度為650 ppm時,該元件電阻值可從78 上升至85 ,氣體響應值約9 %,且氣體響應值會隨氣體濃度增加而上升。