機電工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/84
系所沿革
為迎合產業機電整合人才之需求,本校於民國 91年成立機電科技研究所,招收碩士班學生;隨後並於民國93年設立大學部,系所整合為「機電科技學系」,更於101學年度起招收博士班學生。103學年度本系更名為「機電工程學系」,本系所之發展方向與目標,係配合國家政策、產業需求與技術發展趨勢而制定。本系規劃專業領域包含「精密機械」及「光機電整合」 為兩大核心領域, 使學生不但學有專精,並具跨領域的知識,期能強化學生之應變能力,以適應多元變化的明日社會。
教學目標主要希望教導學生機電工程相關之基本原理與實務應用的專業知能,並訓練學生如何運用工具進行設計、執行、實作與驗證各項實驗,以培養解決機電工程上各種問題所需要的獨立思考與創新能力。
基於建立系統性的機電工程整合教學與研究目標,本系學士班及研究所之教育目標如下:
一、學士班
1.培育具備理論與實作能力之機電工程人才。
2.培育符合產業需求或教育專業之機電工程人才。
3.培育具備人文素養、專業倫理及終身學習能力之機電工程人才。
二、研究所
1.培育具備機電工程整合實務能力之專業工程師或研發人才。
2.培育機電工程相關研究創新與產業應用之專業工程師或研發人才。
3.培育具備人文素養、專業倫理及終身學習能力之專業工程師或研發人才。
News
Browse
9 results
Search Results
Item 碲化鉛熱電材料與銅電極之填料接合性質研究(2012) 李昂倖熱電材料可將熱能轉換成為電能,但其模組製作是一大挑戰,特別是熱電材料與電極接合之技術。PbTe是重要的中高溫熱電材料,本研究改變不同填料,在真空環境中進行PbTe熱電材料與銅電極之接合,實驗結果發現,利用固態擴散接合,將AgCuTi銲片與PbTe熱電材料接合,在520℃持溫60分鐘,發現AgCuTi銲片裡的Ti元素會與Te元素產生TeTi化合物,進而達成接合效果,但也發現Ag元素會有擴散到熱電材料之情形。利用複合銲片接合,填料為助銲劑、SnAg銲片、AlSi銲片與PbTe熱電材料接合,在320℃與580℃個別持溫20分鐘,有最佳的接合效果,在銲道裡沒有發現氣孔與裂痕,但銲道裡有銅元素散佈之情形,未來必須要再增加擴散阻障層,以阻擋銅擴散之情形。Item 三元熱電材料應用於微致冷晶片之研製(2011) 傅從順; Tsung-Shun Fu本研究以電化學沉積的方式電鍍n型與p型 Bi-Te-Se熱電材料,同時,藉由平行線量測法對電化學沉積的熱電材料,量測其熱傳導係數,並獲得相關的熱電特性。最後利用已知熱電特性的熱電材料,搭配微機電製程技術,進行微致冷晶片之研製。 以平行線量測法成功量取熱電材料的熱傳導係數,量測結果n-typed Bi-Te-Se熱電材料,其熱傳導係數為0.185 W/mK,而p-typed Bi-Te-Se熱電材料,其熱傳導係數為0.633 W/mK。藉由熱電優值公式獲得n-typed Bi-Te-Se熱電材料,其熱電優值為17.34×10-4/K,且在常溫工作環境下的ZT值為0.52;而p-typed Bi-Te-Se熱電材料,其熱電優值為53.189×10-3/K,且在常溫工作環境下的ZT值為1.596。最後,將已知熱電特性的熱電材料,藉由電化學沉積搭配微機電製程技術,成功研製出24對的微致冷晶片,其熱電接腳尺寸為600 um的方形陣列,電鍍高度約為10 um,後續將量測其致冷性能,並比較在不同對數條件下的致冷能力。Item 三維熱電微型致冷元件之研製(2010) 許學舜; Hsueh-Sun Hsu現代電子產品逐漸朝向輕薄短小及多功能整合發展,產品比例縮小同時仍需達到良好性能,故必須增加產品元件之密度。可以想像在相同面積的情況下,元件數量卻成比例增加,將帶來更多熱功率,使得元件處於高溫狀態中,降低元件使用壽命。因此,冷卻成為不可忽視的課題。微型熱電致冷元件具有體積小、無汙染、控溫精確等優點,符合目前產業趨勢。然而,傳統熱電致冷元件之製造方式,製程繁雜且生產成本高昂。若應用網版印刷技術製作高性能微型熱電致冷元件,除了可降低生產成本與時間之外,亦能簡化製程,有利於產業應用之普及化。 本研究主要分為二大項目:(1) 以網版印刷技術製備熱電結構,對其席貝克係數、電阻率與熱傳導值進行特性評估;(2) 應用網版印刷技術,透過雙陶瓷基板的方式,並結合覆晶粒接合技術進行熱電致冷元件之製作。實驗結果顯示,n型材料Bi2Te3,其席貝克係數、電阻率與熱傳導值分別為-151.81 V/K、1.03 10-3 m和0.35 W/mK。在環境溫度為300 K之情況下,熱電優值可達0.0191。p型材料Sb2Te3,其席貝克係數、電阻率與熱傳導值分別為125.55 V/K、1.47 10-3 m和0.25 W/mK。在環境溫度為300 K之情況下,熱電優值可達0.0128。最後,將已知熱電特性之熱電材料,藉由網版印刷技術與覆晶接合技術,成功研製出40對熱電偶串接而成之三維熱電微型致冷元件。元件主要結構分為上、下電極基板及中間之熱電結構層,三層結構經精密對準後堆疊而成,其電極為尺寸100 m之方形陣列,電極厚度約為10 m,熱電結構則印製15 m左右之厚度。目前熱電致冷元件的製作,尚待進一步的製程改良,以提升其製程良率與性能品質,期望能在最短的時間內,完成元件的製作與效能測試。Item 熱電材料應用於散熱微致冷晶片之技術開發(2009) 廖莉菱; Li-Ling Lia本研究利用特殊界面活性劑添加於熱電材料鍍液中,以電化學沉積的方式電鑄n-type Bi-Te及p-type Sb-Te熱電材料,探討因添加界面活性劑而產生的碳原子與氧原子,是否跟隨著熱電材料同時產生。同時,藉由平行線量測法對電化學沉積的熱電材料,量測其有無界面活性劑條件下之熱傳導係數,並獲得相關的熱電特性。最後,利用已知熱電特性的熱電材料,搭配微機電製程技術,進行微致冷晶片之研製。 進行熱電鑄層分析結果證實,添加界面活性劑MA後所產生的碳原子,乃一開始即伴隨熱電材料同時沉積,而氧原子則因鑄層表面與空氣接觸後產生氧化反應。以平行線量測法成功量取熱電材料的熱傳導係數,量測結果未添加界面活性劑MA的Bi-Te熱電材料,其熱傳導係數為0.241 W/mK,而未添加界面活性劑MA的Sb-Te熱電材料,其熱傳導係數為0.415 W/mK;添加界面活性劑MA後的Bi-Te熱電材料,其熱傳導係數為0.422 W/mK。藉由熱電優值公式獲得未添加界面活性劑MA的Bi-Te熱電材料,其熱電優值為4.838×10-4 /K,在常溫工作環境下的ZT值為0.145;而未添加界面活性劑MA的Sb-Te熱電材料,其熱電優值為14.7×10-4 /K,在常溫工作環境下的ZT值為0.441。添加界面活性劑MA後的Bi-Te熱電材料,其熱電優值為2.571×10-4 /K,在常溫工作環境下的ZT值為0.077。最後,將已知熱電特性的熱電材料,藉由電化學沉積搭配微機電製程技術,成功研製出18對及50對的微致冷晶片,其熱電接腳尺寸為80 m的方形陣列,電鑄高度約為8 m,後續將量測其致冷性能,並比較在不同對數條件下的致冷能力。Item 界面活性劑於電化學沉積熱電材料之特性研究(2008) 古耀方本研究結合電化學沉積技術與界面活性劑的添加,電鑄n-type Bi-Te及p-type Sb-Te熱電材料,探討界面活性劑對於熱電材料鑄層及熱電特性之影響;發展利用熱電材料塊材取代傳統白金鈦網做為陽極,進行電化學沉積熱電材料。之後利用最佳之參數,搭配黃光微影製程,進行微型致冷晶片之製作。 在實驗之後驗證熱電材料塊材陽極比傳統白金鈦網陽極來的優異,係利用循環伏安法對離子濃度進行監測,發現熱電材料塊材陽極對於離子濃度有補充之作用,因此在長時間的電鑄,可使鑄層成份維持在正確的比例。 本實驗以7.5 × 10-3 M之Bi2O3與10 × 10-3 M之TeO2,7.5 × 10-3 M之Sb2O3與10 × 10-3 M之TeO2金屬粉末,搭配陰離子型界面活性劑MA,鑄出n-type Bi-Te及p-type Sb-Te熱電材料。Bi-Te材料在MA界面活性劑的使用之下,表面粗糙度由原先之40.51 nm大幅降低為15.42 nm,沉積速率由原先之4 m/hr提升至9 m/hr,並成功的將沉積之最小線寬降低至5 m。Sb-Te材料在界面活性劑MA的添加下,對於熱電特性有良好的改善效果,席貝克係數由原先之136.4 V/K提升至526.7 V/K,同時也成功將所電鑄之最小線寬降低至5 m。Item 精密網版印刷應用於熱電材料膜之成形技術開發(2008) 王裕強; Yu-Chiang Wang現代科技日新月異,電子元件在有限空間中以最密集、最有效率的方式排列,且在效能導向之下,元件的工作頻率提升,溫度也隨之升高,因此冷卻成為不可忽視的課題。微熱電致冷元件具有體積小、無污染、控溫精確等優點,符合目前產業趨勢。然而,目前熱電致冷元件製作方式,皆以傳統技術如布里茲曼法、熱壓成形法,或微加工技術如濺鍍/蒸鍍法、MOCVD法等為主。若應用網版印刷技術製作熱電致冷元件,將可以簡化上述製作法的繁雜程序,也減少製造成本與時間,有利於產業應用之普及化。 本研究主要分為三大項目:(1) 針對網版印刷技術之成型結構的解析度與品質加以測試評估;(2) 以網版印刷技術印製熱電材料膜於矽基板上,對其熱電性質與表面形貌、成分等進行特性評估;(3) 應用網版印刷技術,進行熱電元件製程的初步測試與探討。實驗結果顯示,本實驗以網版印刷技術,使用黏度為50 Pas的UV感光型GN-52-479油墨,進行最佳線寬範圍之印刷測試,圖案最小線寬可達40 m,而線寬50至100 m以上有最佳的印刷品質呈現。此外,將黏結劑與熱電材料粉末,以20 wt.%與80 wt.%比例混合調配成熱電漿料,並印製成18 mm 18 mm面積的熱電膜,Bi2Te3與Sb2Te3分別以560 C與585 C,在氫與氬的混合氣氛下,進行四小時燒結,可於燒結過程中還原氧化的熱電膜。燒結後可分別測得席貝克係數與電阻值,Bi2Te3為-57.06 V/K與4.4010-5 m,而Sb2Te3為64.70 V/K與7.3310-5 m。網印技術應用於熱電元件製程進行初步測試,重複三次熱電結構之堆疊印刷程序,可使75與100 m線寬的堆疊結構,達到20 m以上的厚度。未來將繼續熱電元件後續製程之測試與評估,期望不久的將來實現低成本與方便量產為訴求的熱電元件製造技術。Item 電化學沉積技術應用於微型熱電致冷器之研製(2007) 張明宗隨著電子及光電元件產品封裝縮小化及高發熱密度的趨勢,高效率的冷卻及精確控溫技術越來越重要。微熱電元件具有體積小、無污染、控溫效率高等優點,正好符合此一趨勢。由於微電子及微機電技術的進步,使得熱電元件的設計及製程技術而有了新的發展及應用,而微小化的熱電元件更適合應用於微小的電子元件散熱,延長使用壽命及提高元件穩定度。 本研究利用電化學沉積的技術,電鍍n-type熱電材料Bi2Te3及p-type熱電材料Sb2Te3的合金電鍍,研製微型熱電致冷晶片,並探討不同金屬基板上其熱電材料的表面形貌,並找出較佳的電鍍參數,以比較在各個參數不同的情形下之改變,可達到材料之最佳匹配。利用黃光微影的製程分別將上下金屬電極及p-type及n-type腳位做連結,以完成製程整合。 本實驗以濃度為7.5 × 10-3 M 的Bi2O3與10 ×10-3 M 的TeO2,成功鍍出了緻密性良好的n-type Bi2Te3熱電材料,其鍍率約為6 um/hr,其成分為Bi約為45 %,Te成分約為55 %,故後續將再調變濃度,期望達到Bi 40 %及Te 60 %p-type Sb2Te3熱電材料已接近材料所需之成分比率,Sb成分約為42 %,Te成分約為58 %,但對於其表面粗操度仍需進ㄧ步的改善。 而由實驗結果做一實際運作,並對微熱電製冷晶片做特性量測,包括了XRD、SEM、Seebeck 係數、熱傳導係數以及電阻值的量測。Item 常壓電漿輔助之陽極接合技術開發與應用(2013) 黃哲翊; Che-Yi Huang雖然傳統陽極接合(anodic bonding)技術與其他接合技術相比,具有無介質、氣密性接合與製程簡易等優勢,也已廣泛運用於微機電系統(micro-electro-mechanical system, MEMS)之封裝,但卻因為加溫機制需從底部全面性加溫,除了升溫與降溫的耗時外,亦容易在升、降溫時,讓晶片受到熱效應的影響,使接合晶片上之微結構造成破壞。因此,本研究開發出創新性常壓電漿陽極接合(atmospheric pressure plasma anodic bonding, APPAB)之技術,利用電漿具有局部快速升溫與快速降溫的特性,可以大幅降低製程時間以提高效率外,還可減少試片受到熱效應的影響。另外,APPAB技術是利用常壓電漿系統的噴頭作為上電極,而此噴頭可架於具z軸移動功能之載架,且可將接合試片放置於x-y移動平台上,故在進行接合試驗時,可以自由調整上電極高度與移動接合試片,以達到局部性接合與區域性圖案化接合之目的,增加APPAB技術之應用性與彈性度。 本研究進行borofloat玻璃試片與矽晶片之接合試驗,尋求最佳接合參數,其試片之面積尺寸皆為2 cm × 2 cm。經實驗結果顯示,最佳APPAB接合參數為N2製程氣體、3 mm接合間距與2 kV接合電壓,其中試片在進行接合時,可局部性使試片於一分鐘內升溫至約420度,更可在一分鐘內使試片降至室溫約27度,升降溫速率約為62度每秒。本研究也利用最佳參數進行四吋晶片接合試驗,分別以固定式APPAB、移動式APPAB與傳統固定單點電極式陽極接合三種不同方式,來進行接合時間與接合強度之比較,其中移動式APPAB僅需14分7 秒即可將試片完全接合,且平均接合力可達37.64 MPa,與傳統式陽極接合相比,接合時間不僅快了約11倍,其平均接合力也大了1.7倍左右。此外,移動式APPAB在進行陽極接合試驗時,其電流值大約都能維持在0.8 mA左右,不會像固定式APPAB與單點電極式陽極接合之電流值,會隨著接合時間增加而遞減趨近於零,故移動式APPAB的接合品質也會比另外兩種方式來得優良。 本研究除了開發常壓電漿陽極接合技術外,為了提升本技術之應用性,除了玻璃-矽晶片之接合,還進行玻璃與玻璃鍍鋁基板、玻璃與矽鍍鎳基板及玻璃與陽極氧化鋁(anodic alumina oxide, AAO)鍍鋁基板之接合。除此之外,還利用APPAB技術結合陽極氧化鋁與熱電材料,以電化學沉積的方式,分別將p-type Sb2Te3與n-type Bi2Te3之熱電材料,沉積於AAO孔洞中,其沉積速率分別為3.5 um/hr與11 um/hr。本研究所製作之奈米熱電結構(nano structure),將可應用於微型熱電致冷晶片(micro thermoelectric cooler, uTEC)之開發,提升相關熱電元件的性能。Item SOI晶片應用於具矽奈米線之微型熱電致冷晶片的研製(2013) 劉玟均; Wen-Chun Liu以熱電材料所製作之主動式致冷晶片,具有體積小、低成本、無污染、高壽命及易整合於IC元件等優點,已成為目前各式散熱研究中所重視的議題。然而,傳統的熱電散熱技術面臨了不易微小化與整合化的缺點,又面臨高密度積體電路所需之高散熱需求的挑戰,已無法負荷未來電子元件的散熱需求。因此,本研究期望以金屬輔助化學蝕刻之矽奈米線陣列做為熱電材料,配合半導體相關製程製作微型致冷晶片,以此簡易、低成本且無汙染之製程技術,實現以奈米結構來降低熱傳導率進而提升熱電優值,以改善傳統熱電材料所遇到之瓶頸,達到改善微型熱電晶片致冷效率之目標。 實驗結果顯示,以黃光微影製程與結合界面活性劑的濕式TMAH蝕刻技術,可成功於低阻值的n型(0.01-0.02 ohm-cm)與p型(0.001-0.005 ohm-cm)晶片表面,製作出凸角完整之平台微結構,此平台結構區域以金屬輔助化學蝕刻技術製作矽奈米線陣列結構,並測試出最佳的蝕刻參數。 金屬輔助化學蝕刻具有可在室溫進行製程、無須通電、大面積製造,也不需要昂貴的儀器設備,以低成本之方式即可完成矽奈米線的製作。其中,n型矽以4.6 M氫氟酸和0.02 M硝酸銀的混合溶液,在蝕刻時間為20 分鐘後,矽奈米線長度約為5-6 um,直徑約為160-200 nm,深寬比約為30-31;p型矽的部分以4.6 M氫氟酸和0.017 M硝酸銀的混合溶液,在蝕刻時間15分鐘後,奈米線長度約為4-5 um,直徑約為50-100 nm,深寬比約為50-80。 將凸塊平台結構圖案化後,為避免銀沉積太厚而覆蓋,導致氫氟酸無法順利將二氧化矽溶解,因此利用沉積銀金屬與蝕刻矽兩個階段分別進行的步驟,製作高深寬比之矽奈米線。第一階段為沉積銀金屬,皆以4.6 M氫氟酸和0.005 M硝酸銀,第二階段為蝕刻矽奈米線結構,n型矽以4.6 M氫氟酸和0.11 M雙氧水,50組p-n結構之沉積時間為1分鐘,蝕刻時間為 15 min,矽奈米線直徑約為80-150 nm,長度約為5-6 um,深寬比約為40-60;100組p-n結構之沉積時間為30秒,蝕刻時間為 15 min,矽奈米線直徑約為50-100 nm,長度約為7-8 um,深寬比約為80-140。蝕刻完後浸泡於10%的氫氟酸10-15分鐘,可去除矽奈米線外層之氧化物。完成n型與p型矽奈米線的製作後,期望日後能在SOI晶片上實現以矽奈米線作為熱電材料,製作高性能微型熱電致冷元件的目標。