機電工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/84

系所沿革

為迎合產業機電整合人才之需求,本校於民國 91年成立機電科技研究所,招收碩士班學生;隨後並於民國93年設立大學部,系所整合為「機電科技學系」,更於101學年度起招收博士班學生。103學年度本系更名為「機電工程學系」,本系所之發展方向與目標,係配合國家政策、產業需求與技術發展趨勢而制定。本系規劃專業領域包含「精密機械」及「光機電整合」 為兩大核心領域, 使學生不但學有專精,並具跨領域的知識,期能強化學生之應變能力,以適應多元變化的明日社會。

教學目標主要希望教導學生機電工程相關之基本原理與實務應用的專業知能,並訓練學生如何運用工具進行設計、執行、實作與驗證各項實驗,以培養解決機電工程上各種問題所需要的獨立思考與創新能力。

基於建立系統性的機電工程整合教學與研究目標,本系學士班及研究所之教育目標如下:

一、學士班

1.培育具備理論與實作能力之機電工程人才。

2.培育符合產業需求或教育專業之機電工程人才。

3.培育具備人文素養、專業倫理及終身學習能力之機電工程人才。

二、研究所

1.培育具備機電工程整合實務能力之專業工程師或研發人才。

2.培育機電工程相關研究創新與產業應用之專業工程師或研發人才。

3.培育具備人文素養、專業倫理及終身學習能力之專業工程師或研發人才。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    整合光輔助電化學穿孔蝕刻與微電鑄技術應用於微金屬柱陣列之研製
    (2007-11-23) 楊啟榮; 李明承; 羅嘉佑; 張龍吟
    本研究將整合光輔助電化學蝕刻(ECE)與精密電鑄技術,以開發高密度金屬垂直結構陣列之製程技術。利用改變光照強度與電流密度等實驗條件,以電化學蝕刻達到矽晶圓高密度微穿孔的目的,再利用精密電鑄技術進行穿孔之金屬導體填充,如此可實現高密度金屬垂直結構陣列。未來可應用於積體化探針陣列之製作,或利用晶圓內垂直導體而實現晶圓級堆疊封裝之目的。此技術開發有設備與製程成本低、可積體化生產、與半導體製程相容性高、批次生產與良率高等特點。 基於上述,本研究利用自行開發之低成本電化學蝕刻(ECE)設備,順利測得相關製程之最佳參數。由實驗結果已驗證,在利用電化學蝕刻技術製作高深寬比微孔洞陣列方面,當蝕刻時間達到31.5小時,可得高深寬比之穿孔結構。所用之晶片為n-type <100>,其蝕刻液為2.5 wt.%之氫氟酸溶液,陽極放置矽晶片,陰極為白金電極,獲得之穿孔其線寬為40 μm,深寬比約為12.5,證明利用此技術已能局部取代乾式蝕刻之應用領域。在金屬柱電鑄方面,利用正負脈衝電流,使金屬柱陣列能順利成形,其金屬柱高度約500 μm,深寬比約為12.5。
  • Item
    Fabrication of micro free standing structure in p-type silicon using an electrochemical etching technique
    (2005-11-25) 楊啟榮; 林明憲; 湯杜翔; 鍾武雄; Yang; Chii-Rong; Lin; Ming-Hsien; Tang; Du-Hsiang; Chung; Wu-Hsung
    An electrochemical etching technique is suitable to the application of MEMS silicon bulk micromachining. In this work, a HF-ethanol-H2O based electrolyte, modified by adding anionic surfactant MA, was used to evaluate the etching properties of p-type silicon in electrochemical etching. The high-aspect-ratio trench structures and free-standing beams were also fabricated with only single step mask. The results indicate that the pattern of initial pits significantly affects the etching rate of the macropores and the morphology of the etched trench structures. The surfactant MA can drastically reduce the roughness and significantly affect the topology of the etched surface. Because the contact angle of HF-ethanol-H2O-MA based electrolyte is about 6.4 times lower than that in HF-ethanol-H2O based electrolyte. However, the etching rate in MA-added electrolyte is lower than that obtained in electrolyte without MA. Moreover, the wall width of trenches is kept on about 2μm independently of the current density and the width of etching mask. Furthermore, the etched depth is proportional to etching time, but the etching rate is inverse proportional to the etching time. Because the etched depth grows deeper, the concentration of electrolyte at the pore tip decreases linearly with length. The trench structures with aspect ratio of around 40 have been obtained in this study. The free-standing beams are also fabricated with only one mask by controlling the current density.