文學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/2

院成立於民國44年,歷經50餘年的銳意發展,目前設有國文、英文、歷史、地理、臺文等5個學系、翻譯和臺灣史2個獨立所,以及全球華人寫作中心和國際臺灣學研究中心。除臺史所僅設碩士班,其餘6個系所均設有碩、博士班;目前專兼任教師近250人,學生約2500餘人。

本院早期以培養優秀中學國文、英文、歷史和地理教師為鵠的,臺灣中學語文和史地教育的實踐與成功,本院提供不可磨滅的貢獻。近年來,本院隨師範體系轉型而調整發展方向,除維持中學師資培育的優勢外,也積極朝理論研究和實務操作等面向前進。目前,本院各系所師培生的教師檢定通過率平均在95%以上;非師培生在文化、傳播、文學、應用史學及環境災害、地理資訊系統等領域發展,也已卓然有成。

本院各系所教師的研究能量極為豐富,參與國內外學術活動相當活躍。根據論文數量、引用次數等指標所作的學術力評比,本院居人文領域全國第2名。各系所之間,無論是教師的教學與研究,或學生的生活與學習,都能相輔相成、榮辱與共,彼此渾然一體,足堪「為師、為範」而無愧。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    以深度學習理論進行戶籍人口推估
    (2024) 洪紹予; Hong, Shao-Yu
    人口資料於各學科與領域皆有使用上需求,其中地理學注重於討論人口資料於空間上分佈位置。近年來隨著政府資料公開,Open Data可取得人口資料最精細尺度為最小統計區,但台灣政府受限於法治規定,無法開放戶籍門牌尺度人口資料。更精細的人口資料可以減少人口推估誤差,一直以來都有此需求。近年來由於電腦硬體技術提升,使深度學習理論再次受到重視與使用。近期人口推估研究也開始使用深度學習理論進行人口推估。本研究使用分區密度法,多層感知器與卷積神經網路,分別建立三種人口推估模型。並使用容積率、建蔽率、樓地板面積樓層高度、建物型態、國土利用調查成果圖、都市計畫土地使用分區圖等資料做為模型訓練因子,最終產製出5公尺人口網格資料,並與戶籍人口資料進行驗證比對。研究結果顯示卷積神經網路人口推估模型推估結果最為優秀,模型訓練表現優於多層感知器人口推估模型,卷積神經網路人口推估模型Adjusted R2可達0.72585。採用深度學習方法人口推估模型與採用傳統方法人口推估模型相比,更不容易出現極端人口高估與低估現象。