學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/124126
Browse
2 results
Search Results
Item 針對長尾視覺辨識之自適應目標增強策略(2025) 范哲瑋; Fan, Che-Wei監督學習中的長尾問題是由於現實世界資料集中固有的不平衡性所引起的,其中少數幾個類別或樣本佔據了資料分佈的大部分,而大多數類別(「尾部」)則擁有顯著較少的樣本。這個問題對傳統的監督學習算法構成了挑戰,因為這些算法通常優先優化在頻繁(頭部)類別上的表現,而犧牲了在罕見(尾部)類別上的表現。在近期提出的方法中,資料增強技術如 MixUp 和 CutMix 被廣泛應用於解決長尾問題。MixUp 通過對兩張影像進行插值,而 CutMix 則將一張影像的剪切區域貼到另一張影像上,從而合成更多樣化的訓練樣本。然而,據我們所知,目前尚無研究明確探討應該配對或結合哪些影像來達到最佳效果。為了解決這個挑戰,本研究提出了一種名為特徵感知分數選擇 (Feature-Aware Score-Based Selection, FASS) 的新策略。在應用 MixUp 或 CutMix 之前,FASS 根據影像的特徵表現動態選擇並配對影像。與傳統增強方法主要著重於增強少數類別樣本不同,FASS 動態識別與特徵相關的目標類別,以提升模型區分相似特徵的能力。當 FASS 與其他先進方法結合時,在 CIFAR-100 和 ImageNet-LT 等基準資料集上,FASS 展現出卓越的性能,達到了最新的最佳表現。Item 針對心電圖資料不平衡之分類模型設計(2025) 李政軒; Li, Zheng-Xuan本研究旨在探討運用深度學習技術於心電圖(ECG)訊號分類的應用潛力,以協助提升心律異常的辨識能力與早期診斷準確性。研究中提出一種基於一維殘差網路(1D ResNet-18)之模型架構,並整合卷積區塊注意力模組(CBAM)與輔助分類器(Auxiliary Classifier),以強化模型對 ECG 特徵的表達與判別能力。此架構源自電腦視覺任務,經調整後應用於一維生理訊號的分類工作,展現良好的適應性。資料處理方面採用 ADASYN 技術處理類別不平衡問題,並輔以資料增強策略以提升模型穩定性與泛化能力。模型於 MIT-BIH 公開資料集中進行驗證,結果顯示其分類表現優於傳統方法,特別是在多類別訊號辨識上具備一定的穩定性與準確性。綜合研究結果,顯示本模型結合注意力機制、輔助分類設計與資料處理策略後,能有效強化 ECG 訊號分類模型之應用能力,未來有望作為智慧健康照護輔助診斷系統的技術參考。