學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/124126
Browse
2 results
Search Results
Item 用於反射式電子紙顯示器色彩校正的AI模型:邊緣實現的即時方法(2025) 童培軒; Tung, Pei-Hsuan本研究旨在解決反射式彩色電子紙的非線性色彩失真與色偏問題。為此本研究提出了一套基於深度學習的色彩校正架構和基於過往方法開發的半色調演算法,以有效提升色彩還原的準確度與空間連續性,克服傳統方法的限制。為驗證本方法在邊緣運算裝置上的可行性與即時性,我們將模型部署於 NVIDIA Jetson Orin NX,並採用訓練後量化策略將模型由全精度轉換為INT8精度。實驗結果顯示,量化後模型在推論速度上提升近五倍,同時僅有輕微的影像品質減損,大幅降低了記憶體與運算資源需求。本研究提供了一套低成本、高效率且無需額外色彩量測的AI調色方案,證實其具備高度的實用性與延展潛力。Item 基於色調映射與模型可解釋性技術的人臉偵測優化(2025) 李少榆; Lee, Shao-Yu邊緣攝影機在極端背光與低光環境下,因對比失衡與雜訊升高,常導致人臉偵測表現顯著退化。本研究以全域與區域色調映射為核心,結合輕量化偵測器進行系統性評估與消融,聚焦於「前端影像增益」與「小樣本重新訓練」的相對效益與互補效應。結果顯示,在背光與低光影像集中,最佳組合可將檢測精度由 11.6% 提升至 50.7 % ,並明顯改善困難區域的人臉可見度與穩定性。基於此結論,我們提出適用於資源受限情境的實作指引,說明前端增益與輕量偵測的搭配原則與取捨,提供可部署方案,並為後續自適應色調映射與輕量偵測器的協同設計奠定基礎。