學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73908
Browse
16 results
Search Results
Item Rh蛋白在斑馬魚胚胎皮膚的功能(2013) 施廷翰; Tin-Han ShihRh蛋白是在脊椎動物中發現的氣體通道蛋白,被認為具有運輸氨以及二氧化碳的能力。在魚類中,鰓(成魚)以及皮膚(胚胎仔魚)都是主要用來呼吸的器官,但是目前仍不確定是由何種特定細胞來執行排氨以及二氧化碳的功能,也尚未清楚Rh蛋白在其中扮演的角色。在我的研究中,我將利用斑馬魚胚胎,證明Rh蛋白參與皮膚氨以及二氧化碳運輸的功能。 在第一章的研究中,我以螢光免疫染色證明Rhcg1表現在富含氫幫浦細胞(HR cell)的頂端細胞膜上。利用SIET分析仔魚體表細胞的排氨功能後發現,HR cell比它型表皮細胞具有更強的排氨能力,而此排氨能力也隨抑制Rhcg1的表現而顯著降低。我也發現HR cell在高氨下仍可維持排氨作用,但若是抑制氫幫浦(H+-ATPase)或Rhcg1的表現則會使得HR cell失去高氨下的排氨能力,顯示H+-ATPase以及Rhcg1是HR cell執行主動排氨的關鍵分子。 我在第二章要探討排氨以及鈉離子吸收的運輸機制。透過高氨環境抑制排氨將使得鈉離子吸收能力降低。而增加鈉離子的吸收後則使排氨量增加,顯示氨與鈉離子的運輸息息相關。抑制了Rhcg1以及鈉氫交換蛋白(Na+/H+ exchanger, NHE3b)的表現後發現排氨與吸鈉量皆降低。抑制這兩蛋白也影響了體內鈉離子的含量,顯示Rhcg1以及NHE3b是魚類進行排氨依賴性的鈉離子吸收機制的重要蛋白。 於第三章我將分析另一Rh蛋白Rhbg在仔魚皮膚上的分布與功能。利用原位雜交以及免疫螢光染色我證明Rhbg表現在皮膚keratinocyte頂端與底側端的細胞膜上。與抑制Rhcg1相比,抑制了Rhbg的表現會造成更嚴重的排氨能力失調,顯示Rhbg對於排氨的影響更大。然而,Rhbg的抑制將造成Rhcg1的表現增加以及HR cell排氨能力的提升,這些現象說明補償性的排氨機制是藉由HR cell來調節。 在最後的章節中,我分析了仔魚皮膚Rh蛋白與二氧化碳運輸的相關性。研究發現利用高氨環境會抑制二氧化碳的排放,而高碳酸水也會降低氨的排放量,顯示二氧化碳與氨可能透過同一路徑排放。抑制了Rhbg蛋白會顯著降低二氧化碳排放量,但抑制Rhcg1則不會造成此現象。本實驗也利用H+探針測量表皮二氧化碳的水合(產生H+)與碳酸的水解(減少H+),藉以分析細胞膜對於二氧化碳的通透性。在高碳酸水的浸泡實驗中,抑制Rhbg將減少體表鹼化的程度,說明較少的二氧化碳通過表皮。這些數據證實Rhbg是魚類排放二氧化碳的重要路徑。Item 應用斑馬魚作為研究端腦突觸可塑性及智能障礙疾病的模式(2012) 吳民聰; Ming-Chong Ng硬骨魚類的端腦在學習與記憶的形成過程中扮演著重要的角色,其中又以端腦背側的外側區(Dl)與中側區(Dm)最為關鍵。利用螢光追蹤方法可發現,將螢光染劑置入D1區後,螢光物質會由Dl往Dm傳遞,這現象意味著兩者之間的神經纖維有緊密相連的關係,但目前探討Dl-Dm間突觸傳遞現象的研究還非常稀少。斑馬魚是一種廣泛應用於探討藥物成癮、焦慮以及學習和記憶等研究的模式動物。本論文的研究目的之一即以電生理技術,探討在斑馬魚端腦中Dl-Dm投射路徑的神經傳遞與突觸可塑(synaptic plasticity)現象。從結果可觀察到,在Dl給予一次電刺激能引發Dm產生一個負電位之電場電位(field potential, FP),且該FP能被AMPA/kainate受器拮抗劑CNQX、0.5 mM Ca 2+、8.0 mM Mg 2+ 及TTX (0.5 μM)所阻斷;相反的,在無Mg 2+的人工腦脊髓液以及bicuculline中FP則能被提升並引發神經的猝發(bursting)現象。以上結果意味著興奮性與抑制性的神經傳遞作用皆可能具調節神經突觸的功能。為了探究這假說,本論文進一步探討了突觸可塑現象中的長期增益效應(LTP)與長期抑制效應(LTD) 。由結果發現,連續三次高頻刺激(每秒100Hz)或投予腺苷酸環化酶啟動劑Forskolin (50 μM) 15分鐘後皆可引發LTP現象,前者為NMDA受器依賴性LTP,而後者需要extracellular related-signal kinase (ERK)的參與。此外,投予代謝型谷氨酸受體興奮劑DHPG (25 μM) 10分鐘後,則會引發持續至少1小時的LTD現象 。由此可知,斑馬魚端腦Dl與Dm間的突觸連結為端腦突觸可塑性的關鍵角色,也在探討斑馬魚學習與記憶之神經機轉上提供了一個新的電生理模式。另外,斑馬魚在發生遺傳學等相關人類疾病的研究中也已成為不可或缺的動物模式。X染色體脆折症(Fragile X syndrome, FXS)是發生率較高的人類遺傳性智能遲滯疾病,伴隨著外型異常、認知功能以及行為障礙等症狀。FXS是由於FMR1基因發生突變造成其蛋白FMRP缺失所致,建立FXS的動物模式將有助於我們進一步瞭解致病的細胞與分子機制。因此,本論文的另一研究目的即為利用FMR1基因缺失斑馬魚,探究FMRP在行為及神經突觸可塑性中所扮演的角色。實驗結果顯示,成年斑馬魚因缺乏FMR1基因表達,而產生低焦慮、過動和抑制性逃避性學習障礙現象。而在電生理上,FMRP的缺失對於突觸傳遞功能並無明顯影響,但在突觸可塑性方面,相較於對照組,FMR1剔除斑馬魚端腦LTP的強度會減弱,相反的LTD則增強。綜合此研究的各項重要發現,我們認為FMR1基因剔除斑馬魚在未來應用上,除有助於我們瞭解FXS的致病機轉外,更能協助治療性藥物的開發。Item 水通道蛋白8aa在斑馬魚仔魚上的功能性研究(2012) 高揚彥; Kao, Yang-Yen水通道蛋白(aquaporins, AQPs)是一群執行水分子通透的細胞膜蛋白。此外,有些AQPs也被發現具有二氧化碳、甘油、氨與尿素的通透性。最近研究將斑馬魚(Danio rerio) aqps基因表現於蛙卵會增加細胞膜對二氧化碳/NH3通透性。然而,目前仍沒有活體的實驗證實AQPs在動物體內參與二氧化碳(carbon dioxide, CO2)及NH3的通透能力。在本篇研究中,在原位雜交反應的結果中發現aqp8aa主要表現於斑馬魚仔魚的鰓上及皮膚上,而在利用免疫組織染色搭配原位雜交反應的結果發現AQP8AA主要在皮膚上表現於兩型的離子細胞上(HR cells and NaR cells)。而在高氨馴養(10 mM NH4+)的情況下aqp8aa的mRNA表現量有顯著提升的情況,而在高碳酸水馴養的情況下卻無此情況產生。利用反義核酸(morpholino oligonucleotides)抑制aqp8aa蛋白質的表現後,利用掃描式離子選擇性電極(scanning ion-selective technique, SIET)來分析H+及NH4+在斑馬魚仔魚皮膚及離子細胞上的運輸。在knockdown aqp8aa表現後,發現仔魚整體的H+及NH4+的排放量都有下降的情況,而在特定細胞也有相似的結果,而在CO2短暫灌流的結果中也發現魚體對於H+排放量都有下降的情況,在特定細胞也有相似的結果,由此結果推論AQP8AA在斑馬魚的仔魚上可能參與著此三物質的運輸。Item 保護劑對斑馬魚側線機械性傳導通道之影響(2012) 莊偉民; Wei-Min Chuang毛細胞的機械性傳導通道(mechanotransducer channel, MET channel)會受到機械性刺激而開啟。陽離子經由MET通道流入造成毛細胞發生去極化,而釋放神經傳遞物質。胺基糖苷類(aminogly- cosides, AGs)抗生素在臨床上被用於治療革蘭氏陰性菌感染的疾病,但是AGs常導致許多副作用包括內耳毛細胞的損傷,甚至聽力喪失。魚類側線毛細胞為一種機械性接受器,負責感覺外在水體的流動。哺乳動物內耳與魚類側線的毛細胞,兩者不論是構造形態或功能特性都有相似之處,因此斑馬魚常被採用作為耳毒性藥物篩選的模式動物。然而對於毛細胞MET通道的特性目前仍沒有很好的驗證方式。本研究應用非侵入掃描式離子選擇電極技術(scanning ion-selective electrode technique, SIET),針對斑馬魚胚胎的MET通道進行特性分析。毛細胞的纖毛束經微電極的機械性刺激後,可記錄到鈣離子流入,但是鉀離子與鈉離子的通透並不顯著。並且鈣離子流入會被AGs(neomycin和gentamicin)的短時間(30分鐘)處理所抑制,顯示MET通道可能被AGs所阻斷。將環境中鈣離子濃度從0.2 mM提高到2 mM,可減少neomycin和gentamicin對MET通道的阻斷;而提高水中的鎂離子濃度到5 mM,卻只能降低gentamicin對MET通道的阻斷。Amiloride過去被認為是一種MET通道的阻斷劑。本研究發現amiloride並無法阻斷側線毛細胞MET通道的鈣離子流入,但卻可降低AGs對MET通道的阻斷作用。Item 水通道蛋白(aqp1a)在斑馬魚胚胎表皮參與二氧化碳的運送(2011) 趙珮伶; Pei-lin Chao水通道蛋白(aquaporins, AQPs)是一群執行水分子通透的細胞膜蛋白。此外,有些AQPs也被發現具有二氧化碳、甘油、氨與尿素的通透性。因此AQPs 依其功能又區分成三亞群,分別為aquaporins, aquaammoniaporins, 與 aquaglyceroporins三群。在哺乳類研究發現,AQP1缺失的紅血球會降低二氧化碳通透性。最近研究將斑馬魚(Danio rerio) aqp1a表現於蛙卵會增加細胞膜對二氧化碳通透性。然而,目前仍沒有活體的實驗證實AQPs在動物體內參與二氧化碳(carbon dioxide, CO2)通透。本研究利用斑馬魚仔魚為模式動物,探討aqp1a在仔魚表皮細胞上的分佈與功能。將1 % CO2馴養一週的仔魚以real-time PCR分析,結果顯示aqp1a mRNA表現量增加。利用原位雜交與抗體染色標定,發現aqp1a大量表現於卵黃囊表皮上的H+-pump-rich cell與Na+ -pump-rich cell,其他表皮細胞則有少量的表現。利用morpholino knockdown弱化aqp1a蛋白的表現再利用離子選擇電極技術(SIET)分析碳酸排放,發現aqp1a基因弱化的仔魚碳酸的排放減少,顯示aqp1a在胚胎體表細胞扮演CO2通透的功能。Item I. Trip6 蛋白質在小鼠腦中之表現 II. 建立人類惡性腫瘤之斑馬魚異體移植模式(2014) 楊程堯; Cheng-Yao Yang壹、 Trip6 蛋白質在小鼠腦中之表現 甲狀腺素受體作用蛋白質 6 (Thyroid receptor-interacting protein 6, Trip6)是一種焦點連接(focal adhesion)分子,它調控一些細胞機制 如:細胞之間的連接(cell adhesion)、細胞的遷移(cell migration)以及 基因轉錄的活化 (gene transactivation)。過去研究指出 Trip6 屬於幹 細胞性(stemness)的基因,在不同的幹細胞中具有較高的表現量。為了探究Trip6 在神經幹細胞所扮演的角色,我們分別檢測了 Trip6 蛋白質在胚胎與成年小鼠大腦中的表現量。發現 Trip6 的 mRNA 主要在胚胎小鼠的腦中有表現,但在成年小鼠腦中則比較低或偵測不到。其蛋白質也只可以在胚胎小鼠的大腦中被偵測到,成年小鼠則否。另外我們在胚胎與成年小鼠的大腦組織切片中,以不同的細胞標誌與 Trip6 進行組織免疫螢光染色。包括幹細胞的標誌 Sox2、增殖中細胞的標誌 Ki67、室管膜細胞的標誌 S100β、神經母細胞的標誌 DCX、神經元的標誌 MAP2、星狀細胞的標誌 GFAP 以及小膠質細胞的標誌(Iba1)。我們發現 Trip6 主要表達在胚胎小鼠的腦室區(ventricular zone, VZ)以及出生後小鼠的腦室下區(subventricular zone, SVZ)內的神經幹細胞(neural stem cells, NSC)中。這樣的結果支持Trip6 可能在調控幹細胞的特性中是一個重要的關鍵。 貳、建立人類惡性腫瘤之斑馬魚異體移植模式 神經膠質母細胞瘤是成人最常見且高侵略性的原發惡性腦腫瘤。它的侵襲力和耐傳統療法使其成為極易復發的惡性腫瘤。Rac蛋白質屬於Rho GTP酶亞家族,其主要功能包括調節細胞運動,增殖和存活。為了探究Rac蛋白質是否可以作為膠質母細胞瘤的新治療標靶,特別是對於神經膠質母細胞瘤幹細胞,我們利用其類癌幹細胞株建立了斑馬魚的異體移植模式來研究抑制Rac蛋白質對於神經膠質母細胞瘤的致癌性影響。 我們將表達控制組的shRNA或者是針對Rac蛋白質做抑制的shRNA序列和綠螢光蛋白的神經膠質母細胞瘤細胞株U251-MG和U373-MG培養於低分化培養液中,以形成腫瘤細胞球(tumorspheroids)。這些體外培養的球體細胞有著幹細胞的特性。我們將這些細胞以顯微注射的方式注射進入受精後兩天大的血管紅螢光轉基因斑馬魚Tg(kdr: mCherry)的卵黃囊。觀察發現注入的癌細胞誘導了血管新生作用的發生,而表達shRacs細胞萎縮且並未引發血管新生作用。另外,注射shRacs細胞的魚隻生存率也較高。 從我們的研究結果,Rac蛋白質會誘導膠質瘤幹細胞引發血管新生作用,並且可做為一個生物標誌。因此,Rac蛋白質可能可以進一步應用在神經膠質母細胞瘤的標靶治療上。 另一方面,我們也利用注射肝癌細胞株Hep3B進入受精後兩天大的斑馬魚卵黃囊中,來觀察Hep3B細胞的遷移現象,此模式約有20%的魚隻可觀察到細胞遷移。Item 順鉑對斑馬魚仔魚側線毛細胞和皮膚離子細胞之影響(2013) 鄒宜玲; Yi-Ling Chou摘要 Cisplatin在臨床上是最廣泛用於治療惡性腫瘤的藥物之一。然而,cisplatin常會造成的副作用包括腎毒性和耳毒性的傷害。斑馬魚已經被廣泛用來作為模式動物,研究藥物對胚胎發育以及生理功能的影響。過去研究發現cisplatin對斑馬魚側線毛細胞也會造成傷害,因此利用斑馬魚作為研究毛細胞的毒理模式。然而,目前仍未有研究利用斑馬魚去探討cisplatin的腎毒性。斑馬魚胚胎皮膚上分布數種離子細胞與哺乳動物腎臟上皮細胞有許多相似之處,因此本實驗想探討cisplatin對於斑馬魚離子細胞的影響。分析cisplatin對斑馬魚胚胎毛細胞與離子細胞的發育與功能的影響結果顯示,短時間處理濃度500 μM cisplatin 30分鐘後,顯著抑制斑馬魚胚胎側線毛細胞上的機械通道鈣離子流入,顯示毛細胞的功能受損。胚胎處理10 μM cisplatin四天後,毛細胞鈣離子流不但下降,而且毛細胞數目也顯著減少。在離子細胞的部分,處理1000 μM cisplatin 30分鐘後,會顯著降低離子細胞的排酸能力。同時離子細胞的粒腺體染色(??)性降低,顯示粒線體受到損傷。處理100 μM cisplatin 4天後,不但胚胎排酸量顯著受到抑制,也發現離子細胞數目減少。Item 以斑馬魚模式進行腦功能側化相關研究(2017) 吳曜如; Wu, Yao-Ju斑馬魚(Denio rerio)因其胚胎透明、容易飼養及觀察等優點,近年成為神經與發育生物學研究之新興動物模式。斑馬魚的神經系統與大多數硬骨魚類似,其端腦 (telencephalon) 的主要構造、相對體積大小、解剖位置及功能與哺乳類之邊緣系統 (limbic system) 相似,為一個易於操作的端腦功能研究模式。本篇論文即利用斑馬魚的各項研究優勢,進行三個部分的研究,以探討斑馬魚端腦的功能、相關之運作過程與訊息傳遞之機轉。在第一章中,我們延續先前的實驗成果,利用吸引法(aspiration)對端腦進行直接的破壞,以探究端腦在空間記憶形成上所扮演的角色,結果顯示端腦的左、右兩半球,分別對於空間及情緒性記憶 (emotional memory) 有著不同的影響,特別是在獲取 (acquisition) 及重新擷取 (retrieval) 的過程中,而對端腦進行單側破壞(unilateral ablation),均可干擾情緒性記憶的形成。在第二章中,由於過去文獻發現X染色體脆折症 (fragile X syndrome) 患者在腦側化 (cerebral lateralization) 的表現上受到影響,故藉著fmr1基因剔除品系斑馬魚,探討此斑馬魚身上,是否會呈現類似人類病患之異常情緒性行為,結果證實了fmr1之缺損,會造成斑馬魚情緒性行為之發展異常,也會干擾了抑制性逃避記憶 (inhibitory avoidance memory) 的形成。在第三章中,主要使用了電生理的實驗方式,探究斑馬魚端腦外側 (Dl) 到端腦內側 (Dm) 之訊號傳遞。我們發現不只通往同側的端腦內側 (ipsilateral telencephalic Dm region) 有訊號傳遞,而在對側 (contralateral) 端腦之內側亦有類似的訊號傳遞,並且兩側同時存在着代表神經可塑性的長期增强效應long-term potentiation (LTP) 及長期抑制效應long-term depression (LTD) 現象,兩者的作用機制需要麩胺酸NMDA及代謝性受體 (metabotropic glutamate receptor) 的參與;其神經可塑性之LTP與LTD模式,在左、右側端腦中的表現並非完全相同,這呼應了第一階段的實驗結果,進一步證實了斑馬魚的左右側端腦,在處理學習與記憶的功能時,扮演著不同的角色。最後我們也發現,有別於哺乳類動物,斑馬魚主要藉由前連合 (anterior commissure) 構造進行兩側端腦的訊息傳遞。 總結上述三階段的研究成果,可證明斑馬魚端腦中亦存在著腦側化的現象,而斑馬魚確實能應用於探討腦側化的機轉研究。Item 以斑馬魚為模式調查環境酸化與鉑類化療藥物對毛細胞與離子細胞的影響(2019) 洪君儀; Hung, Giun-Yi淡水生態系統的酸化已被認為是全球性的環境問題,並導致魚類行為的變化。然而,酸性環境是否造成淡水魚側線系統的功能改變仍然是未知的。此外,許多研究揭露藥物汙染水環境的事實,其中包括抗癌化療藥物。然而這些藥物造成的環境作用、環境影響的程度與廣度鮮為人知。本研究目的在於檢視斑馬魚胚胎暴露於酸性或鹼性淡水時,是否改變了神經丘毛細胞的表達和功能。並藉由決定鉑類化療藥物(順鉑)對於表皮離子細胞與毛細胞產生影響之最小濃度,了解順鉑之亞致死效應,以應用於鉑類藥物造成水環境影響之早期風險評估。將斑馬魚胚胎暴露於不同的酸鹼pH值環境中,分析長期暴露(受精後0~96小時)與短期暴露(受精後48~96小時)對胚胎形態與側線毛細胞功能之影響。另外,將斑馬魚胚胎受精後長期暴露於不同濃度的順鉑後,分析胚胎形態、存活率、體長、及魚體的離子(鈉、氯、鈣)與鉑含量。功能分析方面,利用掃描式離子選擇電極,分析側線毛細胞功能(機械傳導通道鈣離子流)與皮膚離子細胞排酸功能。結果顯示,長期暴露於pH5條件下,側線毛細胞數量與功能皆下降。短期暴露於pH5條件下,僅毛細胞功能下降,然而毛細胞數目不變。進一步利用morpholino oligonucleotides進行基因減弱,降低H+-ATPase與 gcm2 表現,使得調節酸鹼平衡機制受損後,發現胚胎毛細胞數量與功能皆下降。此外,胚胎長期暴露於濃度由低至高的順鉑中,毛細胞功能最先受損(濃度1 µM)、隨後是毛細胞數與魚體氯離子含量下降(濃度10 µM)、離子細胞排酸能力下降及魚體鈉與鈣離子含量下降(濃度50 µM)、體長與離子細胞密度下降(100 µM)、最後是存活率下降(濃度500 µM)。研究結果顯示酸性環境會導致神經丘毛細胞功能受損。對於順鉑引起之毒性,毛細胞明顯比離子細胞更敏感。本研究利用掃描式離子選擇電極偵測毛細胞與離子細胞功能之改變,決定順鉑最低影響濃度,此法有高達500倍相較於偵測存活率變化之敏感度,未來可應用於偵測鉑類藥物對於水環境造成之早期風險評估。Item 前列腺素E2在斑馬魚酸鹼調節之功能(2018) 彭彥松; Peng, Yan-Sung前列腺素E2(Prostaglandin E2)對於魚類酸鹼平衡的調節仍是未知的。PGE2可透過四型受體(EP),進而影響不同的生理功能。哺乳類主要利用腎臟維持酸鹼平衡,曾有研究發現PGE2參與兔子集尿管的排酸機制,而兩生類也需要透過表皮組織進行酸鹼平衡,排酸能力會受到不同的PGE2濃度而有所改變。然而,生活在水中的魚類,所需要面對環境改變的壓力比起前兩者更大,為了解PGE2與魚類酸鹼調節之間的關係,本研究將斑馬魚進行七天酸處理後發現鰓上PGE2相關的基因表現量上升。此外,將PGE2合成酵素弱化後,排酸能力、HR細胞數量以及排酸相關蛋白質的基因表現量上升。而將受體的基因ptger1a或ptger1b弱化後,在酸性環境下,可能藉由降低碳酸酐酶(ca2)基因表現量進而導致排酸能力無法上升。由此可知,PGE2可能參與斑馬魚的排酸機制,且在正常環境中的運作機制與酸性環境可能不同。