教師著作

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31268

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    H-inf.-observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems
    (1999-10-15) Y.-G. Leu; W.-Y. Wang; T.-T. Lee
    This paper presents a method for designing an H∞-observer-based adaptive fuzzy-neural output feedback control law with on-line tuning of fuzzy-neural weighting factors for a class of uncertain nonlinear systems based on the H∞ control technique and the strictly positive real Lyapunov (SPR-Lyapunov) design approach. The H∞-observer-based output feedback control law guarantees that all signals involved are bounded and provides the modeling error (and the external bounded disturbance) attenuation with H∞ performance, obtained by a Riccati-Like equation. Besides, the H∞-observer-based output feedback control law doesn't require the assumptions of the total system states available for measurement and the uncertain system nonlinearities only restricted to the system output. Finally, an example is simulated in order to confirm the effectiveness and applicability of the proposed methods
  • Item
    Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems
    (IEEE Robotics and Automation Society, 1999-10-01) Y.-G. Leu; W.-Y. Wang; T.-T. Lee
    A robust adaptive fuzzy-neural controller for a class of unknown nonlinear dynamic systems with external disturbances is proposed. The fuzzy-neural approximator is established to approximate an unknown nonlinear dynamic system in a linearized way. The fuzzy B-spline membership function (BMF) which possesses a fixed number of control points is developed for online tuning. The concept of tuning the adjustable vectors, which include membership functions and weighting factors, is described to derive the update laws of the robust adaptive fuzzy-neural controller. Furthermore, the effect of all the unmodeled dynamics, BMF modeling errors and external disturbances on the tracking error is attenuated by the error compensator which is also constructed by fuzzy-neural inference. We prove that the closed-loop system which is controlled by the robust adaptive fuzzy-neural controller is stable and the tracking error will converge to zero under mild assumptions. Several examples are simulated in order to confirm the effectiveness and applicability of the proposed methods