教師著作

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31268

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    On-line Adaptive T-S Fuzzy-Neural Control for A Class of General Multi-Link Robot Manipulators
    (中華民國模糊學會, 2008-12-01) W.-Y. Wang; Y.-H. Chien; Y.-G. Leu; T.-T. Lee
    This paper proposes a novel method of on-line modeling and control through the Takagi-Sugeno (T-S) fuzzy-neural model for a class of general n-link robot manipulators. Compared with previous methods, this paper has two unique aspects: first, a more general n-link robot system using on-line adaptive T-S fuzzy-neural controller is investigated, and second, the complete proof of the controller is given. The general robot systems are linearized via the mean value theorem, and then the T-S fuzzy-neural model can approximate the linearized system. Also, we propose an on-line identification algorithm and put significant emphasis on robust tracking controller design using an adaptive scheme for the robot systems. Finally, an example including two cases is provided to demonstrate the feasibility and robustness of the proposed method.
  • Item
    Robust Adaptive Controller Design for a Class of Uncertain Nonlinear Systems Using Online T–S Fuzzy-Neural Modeling Approach
    (IEEE Systems, Man, and Cybernetics Society, 2011-04-01) Y.-H. Chien; W.-Y. Wang; Y.-G. Leu; T.-T. Lee
    This paper proposes a novel method of online modeling and control via the Takagi–Sugeno (T–S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T–S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T–S fuzzy control methods can model and control them only with great difficulty, if at all. Instead of modeling these uncertain functions directly, we propose that a T–S fuzzy-neural model approximates a so-called virtual linearized system (VLS) of the system, which includes modeling errors and external disturbances. We also propose an online identification algorithm for the VLS and put significant emphasis on robust tracking controller design using an adaptive scheme for the uncertain systems. Moreover, the stability of the closed-loop systems is proven by using strictly positive real Lyapunov theory. The proposed overall scheme guarantees that the outputs of the closed-loop systems asymptotically track the desired output trajectories. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper