教師著作

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31268

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    GA-based learning of BMF fuzzy-neural network
    (2002-05-17) W.-Y. Wang; T.-T. Lee; C.-C. Hsu; Y.-H. Li
    An approach to adjust both control points of B-spline membership functions (BMFs) and weightings of fuzzy-neural networks using a simplified genetic algorithm (SGA) is proposed. The SGA is proposed by using a sequential-search-based crossover point (SSCP) method in which a better crossover point is determined and only the gene at the specified crossover point is crossed as a single point crossover operation. Chromosomes consisting of both the control points of BMFs and the weightings of fuzzy-neural networks are coded as an adjustable vector with real number components and searched by the SGA. Because of the use of the SGA, faster convergence of the evolution process to search for an optimal fuzzy-neural network can be achieved. Nonlinear functions approximated by using the fuzzy-neural networks via the SGA are demonstrated to illustrate the applicability of the proposed method
  • Item
    Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm
    (IEEE Systems, Man, and Cybernetics Society, 2003-12-01) W.-Y. Wang; Y.-H. Li
    In this paper, a novel approach to adjust both the control points of B-spline membership functions (BMFs) and the weightings of fuzzy-neural networks using a reduced-form genetic algorithm (RGA) is proposed. Fuzzy-neural networks are traditionally trained by using gradient-based methods, which may fall into local minimum during the learning process. To overcome the problems encountered by the conventional learning methods, genetic algorithms are adopted because of their capabilities of directed random search for global optimization. It is well known, however, that the searching speed of the conventional genetic algorithms is not desirable. Such conventional genetic algorithms are inherently incapable of dealing with a vast number (over 100) of adjustable parameters in the fuzzy-neural networks. In this paper, the RGA is proposed by using a sequential-search-based crossover point (SSCP) method in which a better crossover point is determined and only the gene at the specified crossover point is crossed, serving as a single gene crossover operation. Chromosomes consisting of both, the control points of BMFs and the weightings of the fuzzy-neural network are coded as an adjustable vector with real number components that are searched by the RGA. Simulation results have shown that faster convergence of the evolution process searching for an optimal fuzzy-neural network can be achieved. Examples of nonlinear functions approximated by using the fuzzy-neural network via the RGA are demonstrated to illustrate the effectiveness of the proposed method.
  • Item
    RGA-based On-Line Tuning of BMF Fuzzy-Neural Networks for Adaptive Control of Uncertain Nonlinear Systems
    (Elsevier, 2009-06-01) Y.-G. Leu; W.-Y. Wang; I-H. Li
    In this paper, an RGA-based indirect adaptive fuzzy-neural controller (RIAFC) for uncertain nonlinear systems is proposed by using a reduced-form genetic algorithm (RGA). Both the control points of B-spline membership functions (BMFs) and the weighting factors of the adaptive fuzzy-neural controller are tuned on-line via the RGA approach. Each gene represents an adjustable parameter of the BMF fuzzy-neural network with real number components. For the purpose of on-line tuning these parameters and evaluating the stability of the closed-loop system, a special fitness function is included in the RGA approach. In addition, in order to guarantee that the system states are confined to the safe region, a supervisory controller is incorporated into the RIAFC. To illustrate the feasibility and applicability of the proposed method, two examples of nonlinear systems controlled by the RIAFC are demonstrated.