教師著作

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31268

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems
    (IEEE Systems, Man, and Cybernetics Society, 1999-10-01) Y.-G. Leu; T.-T. Lee; W.-Y. Wang
    In this paper, an observer-based adaptive fuzzy-neural controller for a class of unknown nonlinear dynamical systems is developed. The observer-based output feedback control law and update law to tune on-line the weighting factors of the adaptive fuzzy-neural controller are derived. The total states of the nonlinear system are not assumed to be available for measurement. Also, the unknown nonlinearities of the nonlinear dynamical systems are not restricted to the system output only. The overall adaptive scheme guarantees that all signals involved are bounded. Simulation results demonstrate the applicability of the proposed method in order to achieve desired performance
  • Item
    Observer-Based Direct Adaptive Fuzzy-Neural Control for Anti-lock Braking Systems
    (中華民國模糊學會, 2006-12-01) G.-M. Chen; W.-Y. Wang; T.-T. Lee; C.-W. Tao
    In this paper, an observer-based direct adaptive fuzzy-neural controller (ODAFNC) for an anti-lock braking system (ABS) is developed under the constraint that only the system output, i.e., the wheel slip ratio, is measurable. The main control strategy is to force the wheel slip ratio to well track the optimal value, which may vary with the environment. The observer-based output feedback control law and update law for on-line tuning of the weighting factors of the direct adaptive fuzzy-neural controller are derived. By using the strictly-positive-real (SPR) Lyapunov theory, the stability of the closed-loop system can be guaranteed. Simulation results demonstrate the effectiveness of the proposed control scheme forABS control.