教師著作
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31268
Browse
2 results
Search Results
Item Output-feedback control of nonlinear systems using direct adaptive fuzzy-neural control(the International Fuzzy Systems Association�, 2003-12-01) W.-Y. Wang; Y.-G. Leu; T.-T. LeeIn this paper, a direct adaptive fuzzy-neural output-feedback controller (DAFOC) for a class of uncertain nonlinear systems is developed under the constraint that only the system output is available for measurement. An output feedback control law and an update law are derived for on-line tuning the weighting factors of the DAFOC. By using strictly positive-real Lyapunov theory, the stability of the closed-loop system compensated by the DAFOC can be verified. Moreover, the proposed overall control scheme guarantees that all signals involved are bounded and the output of the closed-loop system asymptotically tracks the desired output trajectory. To demonstrate the effectiveness of the proposed method, simulation results are illustrated in this paper.Item Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems(IEEE Computational Intelligence Society, 2005-07-01) Y.-G. Leu; W.-Y. Wang; T.-T. LeeIn this paper, an observer-based direct adaptive fuzzy-neural control scheme is presented for nonaffine nonlinear systems in the presence of unknown structure of nonlinearities. A direct adaptive fuzzy-neural controller and a class of generalized nonlinear systems, which are called nonaffine nonlinear systems, are instead of the indirect one and affine nonlinear systems given by Leu et al. By using implicit function theorem and Taylor series expansion, the observer-based control law and the weight update law of the fuzzy-neural controller are derived for the nonaffine nonlinear systems. Based on strictly-positive-real (SPR) Lyapunov theory, the stability of the closed-loop system can be verified. Moreover, the overall adaptive scheme guarantees that all signals involved are bounded and the output of the closed-loop system will asymptotically track the desired output trajectory. To demonstrate the effectiveness of the proposed method, simulation results are illustrated in this paper