教師著作

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31268

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    Adaptive fuzzy-neural sliding mode control for a class of uncertain nonlinear dynamical systems
    (2001-03-24) W.-Y. Wang; M.-L. Chan; T.-T. Lee
    In this paper, a novel design algorithm of adaptive fuzzy-neuralsliding mode control for a class of uncertain nonlinear dynamicalsystems is proposed to attenuate the effects caused by unmodeleddynamics, disturbances and approximate errors. Since fuzzy-neuralsystems can uniformly approximate nonlinear continuous functions toarbitrary accuracy, the adaptive fuzzy control theory is employed toderive the control law for a class of nonlinear system, with unknownnonlinear functions and disturbances. Moreover, the sliding modecontrol method is incorporated into the control law so that thederived controller is robust with respect to unmodeled dynamics,disturbances and approximate errors. To demonstrate the effectivenessof the proposed method, an example is illustrated in this paper.
  • Item
    Sliding Control for Linear Uncertain Systems
    (2003-09-19) C.-W. Tao; M.-L. Chan; W.-Y. Wang
    A new design approach to enhance a terminal sliding mode controller for linear systems with mismatched time-varying uncertainties is presented in this paper. The nonlinear sliding surface is used to have the system states arrive at the equilibrium point in the finite time period. The sliding coefficient matching condition is extended for the terminal sliding mode control. The uncertain system with the proposed terminal sliding mode controller is shown to be invariant on the sliding surface. The reaching mode of the sliding surface is guaranteed and the close-loop system is stable. Moreover, the undesired chattering is alleviated with the designed terminal sliding mode controller. Simulation results are included to illustrate the effectiveness of the presented terminal sliding mode controller.
  • Item
    Robust control of the mismatched systems with the fuzzy integral sliding controller
    (2003-10-08) C.-W. Tao; M.-L. Chan; W.-Y. Wang
    An adaptive fuzzy integral sliding mode controller for mismatched time-varying linear systems is presented in this paper. The proposed fuzzy integral sliding mode controller is designed to have zero steady state system error under step inputs and alleviate the undesired chattering around the sliding surface. The parameters in the fuzzy mechanism are adapted on-line to improve the performance of the fuzzy integral sliding mode control system. Thus, the bounds of the uncertainties are not required to be known in advance. The designed fuzzy integral sliding mode control system is shown to be invariant on the sliding surface. Moreover, the reaching mode of the sliding surface is guaranteed and the close-loop system is stable. Simulation results are included to illustrate the effectiveness of the presented fuzzy integral sliding mode controller.
  • Item
    H-inf. tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach
    (IEEE Systems, Man, and Cybernetics Society, 2002-08-01) W.-Y. Wang; M.-L. Chan; C.-C. James Hsu; T.-T. Lee
    A novel adaptive fuzzy-neural sliding-mode controller with H∞ tracking performance for uncertain nonlinear systems is proposed to attenuate the effects caused by unmodeled dynamics, disturbances and approximate errors. Because of the advantages of fuzzy-neural systems, which can uniformly approximate nonlinear continuous functions to arbitrary accuracy, adaptive fuzzy-neural control theory is then employed to derive the update laws for approximating the uncertain nonlinear functions of the dynamical system. Furthermore, the H∞ tracking design technique and the sliding-mode control method are incorporated into the adaptive fuzzy-neural control scheme so that the derived controller is robust with respect to unmodeled dynamics, disturbances and approximate errors. Compared with conventional methods, the proposed approach not only assures closed-loop stability, but also guarantees an H∞ tracking performance for the overall system based on a much relaxed assumption without prior knowledge on the upper bound of the lumped uncertainties. Simulation results have demonstrated that the effect of the lumped uncertainties on tracking error is efficiently attenuated, and chattering of the control input is significantly reduced by using the proposed approach
  • Item
    Adaptive fuzzy control for strict-feedback canonical nonlinear systems with H-inf. tracking performance
    (IEEE Systems, Man, and Cybernetics Society, 2000-12-01) W.-Y. Wang; M.-L. Chan; T.-T. Lee; C.-H. Liu
    In this paper, an adaptive fuzzy controller for strict-feedback canonical nonlinear systems is proposed. The completely unknown nonlinearities and disturbances of the systems are considered. Since fuzzy logic systems can uniformly approximate nonlinear continuous functions to arbitrary accuracy, the adaptive fuzzy control theory is employed to derive the control law for the strict-feedback system with unknown nonlinear functions and disturbances. Moreover, H∞ tracking performance is applied to substantially attenuate the effect of the modeling errors and disturbances. Finally, examples are simulated to confirm the applicability of the proposed methods.
  • Item
    Recursive back-stepping design of an adaptive fuzzy controller for strict output feedback nonlinear systems
    (ACA (Asian Control Association) and CACS (Chinese Automatic Control Society)�, 2002-09-01) W.-Y. Wang; M.-L. Chan; T.-T. Lee; C.-H. Liu
    In this paper, a back-stepping adaptive fuzzy controller is proposed for strict output feedback nonlinear systems. The unknown nonlinearity and external disturbances of such systems are considered. We assume that only the output of the system is available for measurement. As a result, two filters are constructed to estimate the states of strict output feedback systems. Since fuzzy systems can uniformly approximate nonlinear continuous functions to arbitrary accuracy, the adaptive fuzzy control theory combined with a tuning function scheme is developed to derive the control laws of strict output feedback systems that possess unknown functions. Moreover, the H∞ performance condition is introduced to attenuate the effect of the modeling error and external disturbances. Finally, an example is simulated in order to confirm the applicability of the proposed method.
  • Item
    Design of sliding mode controllers for bilinear systems with time varying uncertainties
    (IEEE Systems, Man, and Cybernetics Society, 2004-02-01) C.-W. Tao; W.-Y. Wang; M.-L. Chan
    Sliding mode controllers for the bilinear systems with time varying uncertainties are developed in this paper. The bilinear coefficient matching condition which is similar to the traditional matching condition for linear system is defined for the homogeneous bilinear systems. It can be seen that the bilinear coefficient matching condition is very limited and is not generally applicable to the nonhomogeneous bilinear system. Thus, the sliding coefficient matching condition is also considered for the bilinear systems with time varying uncertainties. Then, the sufficient conditions are provided for the reaching mode of the time varying uncertain bilinear systems to be guaranteed by the designed sliding mode controllers. Moreover, the stability of the uncertain bilinear systems with the sliding mode controller is discussed. Simulation results are included to illustrate the effectiveness of the proposed sliding mode controllers.