Browsing by Author "Wen-Yi Chu"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item 調變頻譜特徵正規化於強健語音辨識 之研究(2011) 朱紋儀; Wen-Yi Chu在自動語音辨識技術的發展上,語音強健性一直都是一門重要的研究議題。在眾多的強健性技術中,針對語音特徵參數進行強化與補償為其中之一大主要派別。其中,近年來已有為數不少的新方法,藉由更新語音特徵時間序列及其調變頻譜來提昇語音特徵的強健性。綜觀這些技術,絕大多皆是藉由正規化時間序列或調變頻譜之統計特性,以降低語句間不匹配的程度,進而提昇語音辨識系統之強健性。然而本論文嘗試以一個嶄新的觀點切入,以對調變頻譜進行分解與成分分析為目標,提出兩種調變頻譜正規化法。首先,本論文嘗試藉由非負矩陣分解(Nonnegative Matrix Factorization, NMF)擷取調變頻譜中重要的基底向量,並且藉此更新調變頻譜以求取更具強健性的語音特徵。其次,本論文進一步賦予調變頻譜機率的意義,採用機率式潛藏語意分析(Probabilistic Latent Semantic Analysis, PLSA)之概念,對調變頻譜施以機率式成分分析、進而擷取出較重要的成分以求得更具強健性的語音特徵。本論文之所有實驗皆於國際通用的Aurora-2連續數字資料庫進行。相較於使用梅爾倒頻譜特徵之基礎實驗,本論文的方法皆能顯著低降低詞錯誤率。此外,本論文也嘗試將所提方法跟一些知名的特徵強健技術做結合;實驗顯示,相對於單一方法而言,結合法皆可進一步提昇辨識精確率,代表所提之新方法與許多特徵強健技術有良好的加成性。