Browsing by Author "Tsai, Yung-Ming"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item 應用非監督式機器學習於多維度路網資料之探勘(2020) 蔡詠名; Tsai, Yung-Ming近年來由於智慧型運輸系統、物聯網科技以及無線網路科技的進步,加上政府機關對於資料開放的支持,目前可取得大量的交通資料。這些資料具有詳細的空間與時間資訊,甚至更複雜的資料維度。為了萃取隱藏在資料當中的重要資訊,勢必需要多維度的資料分析方法。 本研究提出多維度路網資料的非監督式機器學習方法,用以分析多維度的交通路網資料。演算法利用多維度路網加權矩陣,計算路網在多維度中的距離,並結合K-Medoids演算法適用於離散資料之特性,發展集群分析演算法。為解決K-Medoids集群分析演算法對於初始集群種子與K值的敏感性,演算法採用兩個解決方案。首先,演算法以系統性間距採樣產生初始種子,降低演算法的隨機因素。集群分析演算法中導入集群分割與集群合併的方法,用以彌補初始種子選擇不佳對於結果的影響力。 從高速公路車流量的集群分析中,可以發現演算法具有下列優勢。首先,演算法具有一致性與可靠性。由於系統性間距採樣降低了演算法的隨機要素,因此當給予相同的輸入資料與參數,可以預期演算法產出相同的集群結果。不同的K值對於結果的影響較低,但是適當的K值選擇對於演算法的效能有其助益。集群結果顯示演算法忠於路網的拓樸關係,距離相近但路網距離差距甚遠的資料不會被分配在同一個集群中。演算法也能成功辨識跨路網的交通樣態。集群結果也顯示演算法能分辨在時間與車流量維度的特徵的差異,將具有特殊時間或車流量樣態的資料具為一類。 本研究的結果可以提供運輸管理、物流、交通地理等領域一個系統性分析時空或多維度路網資料的取徑,從集群中心可得知資料樣態的規則,而集群也能做為可操作的單元,供進一步的決策使用。