Browsing by Author "Liu, Cheng-Han"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item 深度學習於星系團成員之應用(2022) 劉承翰; Liu, Cheng-Han星系團成員星系的判斷對於星系演化、星系團質量和宇宙學等研究至關重要。在過去的二十年裡,已經有好幾種星系團成員星系的判斷方法被開發了。一般來說,有三種方法,第一是基於星系顏色與亮度的方法,例如紅序列(red sequence);第二是基於紅移的方法,研究人員透過直接測量星系的光度紅移(photometric redshift, photo-z)或光譜紅移(spectroscopic redshift, spec-z)來判斷我們與該星系的距離,第三則是基於機器學習(machine learning, ML)或深度學習(deep learning, DL),直接進行星系團成員星系的判斷。近年來,基於機器學習或深度學習的方法為光度紅移及星系團成員星系的判斷帶來更高效率且更好的結果。但是,這些研究都是基於大量的光譜能量分布(spectral energy distribution, SED)的資訊,也就是說,多波段,這些研究人員通常使用五個以上的波段。在我們的研究當中,我們想要知道,利用兩個波段及非SED的資訊,例如星系的表面亮度或是形狀,是否能夠得到與其他紅移估計與星系團成員辨認相關研究相當,或是更好的結果,同時,我們也設置了一系列的深度學習實驗來了解怎樣的來源,前景或是背景星系,會對星系團成員星系的辨認造成影響。我們的研究結果顯示,使用兩個波段及非SED的資訊在紅移估計上得到可與其他研究可相提並論之結果,我們模型的均方根誤差(root mean squared error)大約為0.08,而平均絕對誤差(mean absolute error)大約為0.06,且光學波段(V band)對於紅移的估計相對重要。在星系團成員星系的判斷上,我們得到70 %的ROC下面積(area under receiver operating characteristic curve, AUC),前景星系對於星系團成員星系的判斷會造成問題,以及利用不同視線上速率(line-of-sight velocity)來限制星系團成員星系的範圍並不會對結果產生影響。除此之外,我們透過比較利用深度學習以及利用預測的紅移,這兩種方式在星系團成員星系的判斷上得知,利用預測的紅移來判斷星系團成員星系是不可能的,因為預測紅移的模型誤差比星系團的紅移範圍還要大。在深度學習模型方面,我們發現到利用適當數量的資料訓練多層感知器與卷積神經網路的混和模型(hybrid MLP-CNN model),通常能夠得到較好且較穩定的結果,這樣的結果顯示讓深度學習模型同時學習物體的特徵數值及結構是較好的訓練策略。