Browsing by Author "Hsu, Hsien-Wei"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item 旅遊評論關注面向與不一致性分析研究(2018) 許先緯; Hsu, Hsien-Wei網路的便利性改變人們的消費習慣和店家的經營模式,許多人在進行購物前習慣上網先查詢相關評價再決定是否購買,希望購買的物品能達到預期的效益。店家則希望消費者在購物體驗後能上網留下評價,這些評論能夠吸引更多人關注並且提供店家維持品質和改善的方向。一篇評論通常包含使用者給予的星等分數和意見,當評論文章數量變多,經過觀察會發現其中有些評論的星等分數和意見內容不符合,像是使用者給予5顆星的正面評分但是留下的意見卻都是許多缺失和抱怨,就是所謂的不一致現象。 本論文使用的資料來自於TripAdvisor國際旅遊評論網站,實驗資料選自台北市知名7間飯店。研究目的有二:第一個目的是擴充情感字典裡的詞彙數量,透過自建擴充的情緒詞彙庫和所提出的情緒計算模組能自動賦予每個詞彙情緒分數,分析評論文章的不一致性,以便提供有效的評論意見供旅客做為參考依據。第二個目的是找出評論文章裡的面向詞(Aspect term),將所有面向詞映射到向量空間後使用分群演算法進行分群,希望意義相近的詞彙能夠分到同一類並找出能夠代表此類的代表字,當使用者想要查看所在意面向的評論文章時,不需要每篇評論都要看過,而是能夠透過分析出來的代表字快速找到有關此面向的評論文章,也能更細部的分析各個面向的正負面評價。 本研究提出三種基於不同規則的統計算法辨識評論文章的不一致性,其中使用去掉最低分做算術平均數之規則,系統準確率可達到85.7%。關注面向部分,使用Word2vec產生詞向量,利用K-Means和Fuzzy C-Means將面向詞分群,並找出每群的代表字。研究結果顯示,使用Fuzzy C-Means分群找出的代表字較能區分各種不同面向。