Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "隋嘉銘"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    改良深度學習的人形機器人於高動態雜訊之視覺定位
    (2024) 隋嘉銘; Sue, Chia-Ming
    一些基於相機或其他技術的視覺 SLAM 方法已經被提出。 光學感測器來導航和了解其環境。例如, ORB-SLAM 是一個完 整的 SLAM 系統,包括視覺里程計、追蹤和定位 ORB-SLAM 僅 依賴使用單目視攝影機進行特徵偵測,但在與人形機器人一起工 作時,會出現嚴重的問題晃動模糊問題。深度學習已被證明對於穩健且即時的單眼影像重新定位是有 效的。視覺定位的深度學習是基於卷積神經網路來學習 6-DoF 姿 勢。 它對於複雜的照明和運動條件更加穩健。然而,深度學習的 問題是視覺定位方法的一個缺點是它們需要大量的資料集和對這 些資料集的準確標記。本文也提出了標記視覺定位資料和自動辨識的方法用於訓練 視覺定位的資料集。我們的標籤為基於 2D 平面( x 軸、 y 軸、 方向)的姿勢。最後,就結果而言可見,深度學習方法確實可以 解決運動模糊的問題。比較與我們以往的系統相比,視覺定位方 法減少了最大誤差率 31.73% ,平均錯誤率減少了 55.18% 。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback