Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "陳致仰"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    改良式對角化主要成份分析法應用於兩類別想像動作腦電波的分類
    (2007) 陳致仰
    本論文提出一個有效的方法,對受測者在意圖抬起左手小指頭與意圖吐舌頭時的腦電波做辨識。腦電波辨識是否成功的關鍵,在於特徵擷取與分類兩個議題。過去文獻將重點放在分類演算法的改良上,然而找出更簡單而重要的特徵,也可以獲得高辨識率。對角化主要成份分析法(DiaPCA)可以從腦電波高維度的時-頻-空域資料矩陣中找出主要的成份。被挑選出來的主要成份可構成一個較低維度的特徵矩陣,但仍保有兩種想像動作的腦電波之間主要的特徵差異。因此,藉由計算特徵矩陣間的歐氏距離就可分類腦電波。這個方法比起其他分類演算法,如支持向量機(SVM),不但較為簡單,而且不會降低辨識率。本論文提出利用「改良式對角化主成份分析法」對腦電波擷取特徵並辨識,結果顯示,腦電波辨識的準確率大幅提升了10.07%。
  • No Thumbnail Available
    Item
    改良式對角化主要成份分析法應用於腦電波辨識
    (2007-06-01) 陳致仰; 葉榮木; 蔡俊明
    本篇文章提出一個有效的方法,對受測者在意圖吐舌頭與意圖舉起左手時的腦電波做辨識。腦電波辨識是否成功的關鍵,在於特徵擷取與分類兩個議題,有別於過去文獻將重點放在分類演算法的改良上,我們認為找出更具代表性和更精簡的特徵,同樣值得重視。若選取的特徵能夠讓類別之間的差異變大,我們就可以使用很簡單的方法,來取代原先複雜的分類演算法,也不會降低辨識的準確率。在此,我們採用在人臉影像辨識中,具有良好效果的對角化主成份分析法(DiaPCA),來擷取腦電波特徵,並加以辨識。我們除了找出 DiaPCA 在腦電波辨識的應用中最佳的參數條件之外,並提出了「改良式對角化主成份分析法」,來提升其辨識率。研究結果顯示,我們所做的修改,將原始的 DiaPCA應用在腦電波辨識的準確率大幅提升了10.79%。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback