Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "陳瑞宜"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    完全圖上最大權重配對問題之自我穩定演算法的設計及分析
    (國立臺灣師範大學研究發展處, 2000-04-??-) 陳瑞宜; 林順喜; Rue-Yi Chen and Shun-Shii Lin
    在1974年,Dijkstra提出了自我穩定的概念。一個分散式系統不論其初始狀態為何,最後都會收斂至正確的系統狀態稱之為自我穩定系統。近年來,自我穩定演算法不用初始化的特性受到許多研究者的重視。Hsu和Huang針對分散式網路中「最大配對」問題提出了自我穩定演算法,並利用變數函數分析法,證明了此演算法需耗用的時間複雜度為O(n3),然而Tel針對此一演算法提出不同的變數函數,證明最多需要O(n2)的時間複雜度。在本論文中,我們將自我穩定系統的理論應用在完全圖上的「最大權重配對」問題,設計出包含五個規則的自我穩定演算法,並針對此自我穩定演算法的正確性進行證明分析。最大權重問題是指當節點兩兩配對之後,其線段權重兩兩交換並不會找到更大的值,也就是除了希望在圖中找到最大配對之外,更進一步能夠使配對的權重達到最大。因此我們結合了Hsu-Huang最大配對自我穩定演算法,以及嶄新的交換配對規則,保留自我穩定系統容錯及自我穩定的特性,設計了時間複雜度為O(n2+nk)的一個最大權重配對問題之自我穩定演算法。
  • No Thumbnail Available
    Item
    完全圖上最大權重配對問題之自我穩定演算法的設計及分析
    (國立臺灣師範大學研究發展處, 2000-04-??) 陳瑞宜; 林順喜; Rue-Yi Chen and Shun-Shii Lin
    在1974年,Dijkstra提出了自我穩定的概念。一個分散式系統不論其初始狀態為何,最後都會收斂至正確的系統狀態稱之為自我穩定系統。近年來,自我穩定演算法不用初始化的特性受到許多研究者的重視。Hsu和Huang針對分散式網路中「最大配對」問題提出了自我穩定演算法,並利用變數函數分析法,證明了此演算法需耗用的時間複雜度為O(n3),然而Tel針對此一演算法提出不同的變數函數,證明最多需要O(n2)的時間複雜度。在本論文中,我們將自我穩定系統的理論應用在完全圖上的「最大權重配對」問題,設計出包含五個規則的自我穩定演算法,並針對此自我穩定演算法的正確性進行證明分析。最大權重問題是指當節點兩兩配對之後,其線段權重兩兩交換並不會找到更大的值,也就是除了希望在圖中找到最大配對之外,更進一步能夠使配對的權重達到最大。因此我們結合了Hsu-Huang最大配對自我穩定演算法,以及嶄新的交換配對規則,保留自我穩定系統容錯及自我穩定的特性,設計了時間複雜度為O(n2+nk)的一個最大權重配對問題之自我穩定演算法。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback