Browsing by Author "陳正達"
Now showing 1 - 20 of 34
- Results Per Page
- Sort Options
Item 1991-1995 長聖嬰個案診斷分析(2012) 徐尉傑; Wei chieh Hsu聖嬰現象的周期一般為1-2年,1991-1995年出現長達五年的聖嬰,是過去百年觀測紀錄最長的聖嬰個案。目前雖然已有些研究探討此個案,但此長生命聖嬰現象如何維持?全球暖化或太平洋年代際變化與此個案的關係?目前尚無清楚的答案。本研究主要利用SODA (Simple Ocean Data Assimilation) 2.0.2觀測資料以及濾波方法探討全球暖化與太平洋年代際變化對1991-1995 聖嬰個案的影響,並透過混合層熱量收支了解此長聖嬰個案維持的物理機制。 從海洋垂直結構與大氣環流發現此聖嬰為中太平洋型聖嬰與東太平洋聖嬰兩類型聖嬰的混合,前期(1991-1992)大氣與海洋結構近似東太平洋型聖盛嬰,後期(1993-1995)類似中太平洋型聖嬰。濾波分析顯示太平洋年代際變化對此聖嬰週期的延續具關鍵性影響,但全球暖化線性增溫的影響則不明顯。混合層熱量收支得到太平洋年代際變化主要透過氣候平均垂直運動之垂直溫度平流項與氣候平均緯向運動之南北向溫度平流項延長此聖嬰的周期。Item ECHAM4 模式T42系集模擬與T106模擬季內振盪之比較(2006) 陳盈靜亞洲夏季季風的活躍與暫歇受季內振盪(ISO,Intraseasonal Oscillation)的影響很大,因此若能改善ISO的預報,將有助於亞洲季風之預報。本研究採用ECHAM4 T42及T106(European Centre,Hamburg)模式之日降雨值進行ISO評估。分析結果顯示,ECHAM4 T42模擬,無論是氣候模擬或是各年模擬,至五月份相關係數都下降,到了七、八月回升。五月份模擬變差的時間與對流往北移動的時間相符,而運用ECHAM T106模擬後,可使模擬結果變得更好,但五月份的空間相關係數仍較其他月份低。T42模式透過傳統系集平均,可有效增加模擬結果,無論是氣候模擬或是年際變化,十個模擬之傳統系集平均與五個模擬之傳統系集平均結果相差不多;運用系集模擬之後,無論在在訓練時間(training period)及預報時間(forecast period),系集模擬比單一模擬要好,透過統計回歸模擬又較傳統平均系集模擬佳,且透過統計回歸模擬,五月模擬較其他月份差的現象可獲得改善。 五月份30~60天降雨與赤道東太平洋、印度洋SST呈正相關,與熱帶西太平洋SST有呈負相關;模式對SST年際變化之反應與觀測相似,當東太平洋SST偏暖,西太平洋SST偏冷,在西太平洋地區30~60天振盪位置偏南,然而在模擬較差年時,在西太平洋地區30~60天振盪位置,較觀測位置偏北,降雨預報較觀測差;此外無論是模擬較佳年或是模擬較差年,印度洋地區預報均偏北;經過統計回歸方式調整後,對西太平洋地區及印度洋地區預報均有改善。Item 不同的夏季降雨型態對於極端時雨量與大氣溫度對應關係的影響(2022) 朱建穎; Chu, Chien Ying全球暖化使得溫度上升,大氣溫度變化可能對於極端降雨型態與特性有所影響,許多前人指出全球暖化可能會改變極端降雨的頻率、降雨強度以及延時長短,從熱力學的克勞修斯-克拉佩龍關係式,可以推測當氣溫在上升1度時,大氣的飽和水氣壓會上升大約7%,所以許多過去的研究認為,由於水氣增加,極端降雨強度也會以相似比例增加,比較不像平均降雨的變化會直接受到平均環流變化的影響。但是過去研究發現,當氣溫上升到較高的氣溫度時,雖然大氣中的水氣壓隨溫度上升的速度變化不大,但是極端降雨隨溫度上升速率變成克勞修斯-克拉佩龍關係的兩倍或更多。不過當氣溫或是露點溫度上升至25度至26度以上時,隨著氣溫或露點溫度升高,極端降雨強度反而下降。以臺灣測站資料進行類似分析,並針對夏季降雨型態做分類後,可以發現在上述大氣背景氣溫與極端降雨強度關係中,在高溫所得到的負斜率關係多半是由於午後雷陣雨以及其他未歸類的降雨型態為主,這兩種降雨型態往往伴隨的日均溫度較高,但降雨強度較其他降雨型態弱,導致負斜率的發生。從降雨事件分析,極端降雨強度在降雨延時變短時也會隨之減弱。而露點溫度–極端降雨強度關係中,負斜率的露點溫度主要是由颱風與其他未歸類的降雨型態為主,屬於午後降雨型態的極端降雨所伴隨的露點溫度反而較低。在結合降雨事件延時做分析後,目前我們可推斷,午後降雨型態在負斜率的露點溫度–極端降雨強度關係中,極端降雨強度隨著露點溫度反而增加,降雨事件的延時也增加,從物理的角度來看,午後降雨是往往是局部區域的對流性降雨,小尺度對流系統降雨的延時卻較長,代表不只是大氣的溫度高,而且水氣也較為充足,因此露點較高;然而在颱風降雨型態下,較強的極端降雨強度往往伴隨較低的露點溫度,是因為當颱風降雨較強時,往往是屬於較長降雨延時的事件,整體環境溫度隨著持續降雨而降低,使露點溫度較短延時的颱風外圍雨帶的露點溫度低,對於上述負斜率有較大的貢獻。Item 人為影響對2009年莫拉克颱風極端降雨變化的歸因分析(2021) 駱世豪; Lo, Shih-How天氣與氣候極端事件到底是不是真的已經與過去發生的事件截然不同,一直是極具爭議性的問題。本研究針對最近發生的極端天氣事件(如熱帶氣旋)進行機率事件歸因研究,期望能克服模式模擬極端天氣與氣候事件的能力限制,同時也能夠透過獨特的數值實驗設計釐清並量化過去氣候變遷中人為的貢獻。本研究中主要分為三部分,(1)過去百年人為所造成的大氣與海洋變化的估算,運用第五階段耦合模式比較計劃(CMIP5)的氣候模式數值實驗資料庫,可以將人為排放溫室氣體與氣溶膠的作用與已知的氣候系統自然變動加以區分,同時也以不同模式的估算涵蓋其不確定性。(2)評估雲解析風暴模擬模式對於侵臺颱風與其伴隨降雨的模擬能力,了解其掌握大尺度背景環流、熱力結構以及地形對颱風影響的能力。(3)利用歷史情境和只有自然驅力情境的系集模擬,進一步展開人為因子對於颱風影響的量化評估。 運用機率事件歸因的統計分析,並以莫拉克颱風(2009)為例,研究發現過去百年人為所造成的氣候暖化,對於颱風路徑並沒有顯著性的影響,整體颱風強度指數的增加雖然只有 5%左右,但是統計上非常顯著。而伴隨颱風的極端強降雨分析顯示,對於區域強降雨超過 500 mm以上的極端事件發生機率,人為的影響非常可能(大於 90%)會使極端降雨機率增加至少 10%。若以相對於颱風中心的角度分析,極端降雨超過 2000 mm 以上的事件發生機率,人為的影響可能(大於 66%)會使極端降雨機率增加至少 10%,甚至也不排除有 10%的機會,人為的影響使極端降雨發生的風險增加了一倍。進一步透過颱風環流與熱力結構分析發現,極端降雨增加的原因不只來自於水氣的變化,上升氣流加強以及其與極端降雨增加的空間對應關係,顯示動力效應提供了額外的助力。Item 以事件角度分析台灣極端降雨變化(2023) 趙品諭; Chao, Pin-Yu極端降雨在氣候風險評估中屬於主要危害之一,過去因極端降雨所引發之自然災害造成許多損失,因此極端降雨過去及未來如何變化逐漸受到重視。台灣的極端降雨往往發生在特定的環境條件,如颱風或梅雨鋒面等。然而,過去相關的極端降雨研究多使用極端降雨指標來做分析,且極端指標主要是以各格點的資料做計算,而非獨立之極端降雨事件。因此,本研究以事件角度分析極端降雨變化提供了該領域研究下新的觀點。本研究利用高解析度網格化觀測資料,以深度優先追蹤演算法偵測1960年至2019年間的台灣極端降雨事件,並設定兩種門檻(80mm和350mm)來篩選出大雨事件和大豪雨事件。本研究利用極端降雨事件之特性進行分析,其中事件之總降雨體積可分為平均降雨強度、平均影響面積,以及持續時間之貢獻,因此透過此關係除了可以了解事件間的差異,也可以取得各年或各區域極端降雨的主要貢獻事件。而台灣極端降雨事件前十名之特性也一併在本文中進行討論。 本研究發現兩種強度之台灣極端降雨事件在過去60年中發生頻率及總強度皆呈顯著增加,其中大豪雨事件在後30年的發生頻率較前30年增加76%,大雨事件則增加23%。對於總降雨體積變化之貢獻,大豪雨事件之平均降雨強度、平均影響面積及持續時間變化皆呈增加,但持續時間之變化不顯著。而大雨事件之趨勢也相同,但持續時間變化在大雨事件中則顯示減少趨勢。除此之外,平均影響面積之變化為總降雨體積變化的主要貢獻。Item 使用大尺度環境因子預報熱帶氣旋生成之特性研究(2012) 陳建蒲; Jian-Pu Chen自然災害中颱風造成的人員傷亡和經濟損失影響甚大,在全球氣候暖化下熱帶氣旋如何改變,一直以來都是備受廣泛討論的問題。近年來,許多研究對於熱帶氣旋主要發展區域,利用動力模式來作出颱風季節預報。 利用全球模式和區域模式模擬熱帶氣旋通常利用客觀的方法在熱帶區域偵測出類似熱帶氣旋的渦旋和渦旋的演變。不過,受到解析度的關係,模擬出的渦旋強度無法與實際觀測的相比,且就算模式解析度達到幾十公里,氣旋中心內的複雜的動力機制也無法得到完善的解釋。故另一種方法是研究大尺度環境場與實際觀測颱風個數之間的關係,發展出大尺度環境場與熱帶氣旋生成相關的潛在生成指數,則可以簡單的利用模式模擬出的環境場作颱風季節預報。 本篇研究目的是使用不同的熱帶氣旋潛在生成指數來比較季節預報上的可行性,並使用不同的熱帶氣旋潛在生成指數應用在ECHAM4和ECHAM5全球模式。以季節循環、空間分佈、年際變化來探討模式的模擬的能力,也分析各項環境條件對於熱帶氣旋生成的影響。Item 全球暖化影響之下日降水與極端降水事件變化之探討(2006) 吳郁娟Weather and climate events can have serious and damaging effects on human society (such as flood, heavy precipitation, heat wave, etc.). In this study, the simulation of the variability and extremes of daily rainfall for the present and the future climate is investigated. This is done by the ECHAM4/OPYC3 GSDIO for the period 1960-1990 and the Special Report on Emission Scenarios (SRES) A2 (rapid CO2 increase) and B2 (moderate CO2 increase) forcing scenario for the period of 2070-2100. Moreover, observational rainfall data from the Global Precipitation Climatology Project (GPCP, 1996-2004) is considered. In general, analysis of model data revealed agreement with observations. For the future, the ECHAM4/OPYC3 simulates the variability of the daily rainfall predicts the most pronounced precipitation changes are found in high latitudes of the Northern Hemisphere for the winter. However for some continental areas, the change of mean precipitation and rainfall intensity is not coincident. A clear reduction in the probability of wet day, in particular, for the large areas in the northern mid-latitudes and subtropics. Despite this decrease the relative contribution of heavy precipitation has grown due to the corresponding increase of the scale parameter of the gamma distribution. This implies a more extreme climate with higher probabilities of droughts and heavy precipitation events. Furthermore, the variability of the 99.7th percentile also implies in the area of heavy precipitation, stronger heavy rainfall will happen in the future, vice versa. Extreme value theory based on GEV and GPD provides a much more complete analysis of the statistical distribution of extreme rainfall event. We have obtained statistically significant spatial models of the three parameters of GEV and GPD. N-years return level form GEV or GPD all show the relative changes in extreme precipitation is larger than change in total precipitation.Item 兩類型聖嬰對西北太平洋氣旋活動影響之模擬(2014) 張雅惠; Ya-Hui Chang許多研究中發現在熱帶太平洋上,有兩種不同類型的聖嬰-南方振盪(El Niño-Southern Oscillation, ENSO)事件,並且在近年來吸引了不少相關主題的研究和熱烈的討論。在這些研究當中,也重新的審視了聖嬰-南方振盪所造成的影響,探討東太平洋聖嬰(EP El Niño)及中太平洋聖嬰(CP El Niño)對於全球氣候影響的差異。而在我們分析觀測資料的結果中同樣發現,在兩類聖嬰事件中,不同的海表面異常增溫位置,會造成大尺度環境有不同的反應,而其不同距平的分布差異,會進而影響西北太平洋熱帶氣旋活動頻率的距平分布。 本篇研究的目標為根據在近幾十年有限觀測資料下定義出的事件中,檢驗模式重現在兩類El Niño下環境場以及熱帶氣旋活動的能力。研究中以觀測及合成之典型EP El Niño、CP El Niño事件和氣候平均之海表面溫度,作為驅動馬克斯-普朗克研究室發展的全球模式(Max Plank Institute global climate model, ECHAM5)之邊界條件,並且同時與ECHAM5 AMIP-type長期模擬結果下的合成EP El Niño和CP El Niño 事件做比較。從西北太平洋熱帶氣旋活動模擬結果的分析中,我們發現CP El Niño事件下,有較好的模擬表現,而在EP El Niño事件的模擬下,則是在西北太平洋西北象限會產生偏差。此外,從模擬的結果中也可以發現,模式大致上可以掌握住在兩類型聖嬰現象下,主要的大尺度環流場距平特徵。Item 利用高解析度大氣模式與CMIP6高解析度氣候模式探討TC頻率與破壞性之現今模擬與未來變化(2023) 陳冠杰; Chen, Kuan-Chieh本研究利用高解析度大氣與海氣模式,系統性評估模式模擬西北太平洋TC (Tropical Cyclone)活動之表現,及推估未來溫室氣體濃度為CMIP5(Coupled Model Intercomparison Project 5)中的RCP8.5 (Representative Concentration Pathways 8.5)與CMIP6中的SSP5-8.5 (Shared Socioeconomic Pathways 5-8.5)暖化情境下,近未來(2021-2050)與21世紀末(2075-2099)西北太平洋TC活動及登陸東亞沿岸地區之變化,並利用GPI(Genesis Potential Index)與SSE (synoptic-scale eddy)能量診斷等工具,分析TC變化機制。結果顯示25~50公里高解析度大氣與海氣模式均可以模擬現今氣候TC生成與軌跡頻率。然而,模式仍低估TC平均最大強度及強烈TC數目,其中海氣模式更低估TC強度。經由SSE能量診斷分析,顯示ISO(Intraseasonal Oscillation)與SSE尺度交互作用,在TC強度增強過程中,扮演重要的角色。海氣模式模擬ISO提供顯著較少的能量給TC發展。ISO南側較弱的水氣通量,較不利TC潛熱釋放,TC可用位能轉換成較少的TC動能,限制TC強度發展。高解析度氣候模式有助於TC活動模擬表現。高解析度海氣(大氣)模式推估在CMIP6 SSP5-8.5 (CMIP5 RCP8.5) 暖化情境下,近未來(2021-2050) (21世紀末(2075-2099))的TC生成數目減少4.3%(50%),強度增強0.8%(14%),及伴隨降雨增加5.8%(35.4%)。TC登陸東亞沿岸地區的頻率減少4.5%(51.9%)。暖化效應影響下,高解析度海氣與大氣模式推估近未來與21世紀末西北太平洋TC活動的變化趨勢一致,但變化幅度仍具有不確定性。經由GPI與SSE能量診斷分析,發現高解析度大氣模式推估在21世紀末TC主要生成位置上,中層大氣較乾燥,季風槽減弱伴隨中層下沉運動異常及SSE活動減弱,限制TC生成。然而,在21世紀末,較暖海溫與較弱垂直風切,及SSE動能產生效率增加,有利TC更快速的增強,更具有破壞性。Item 副熱帶東北太平洋海溫年際及年代際變化以及其對亞洲-太平洋之影響(2019) 鄔毅愷; Wu, Yi-Kai觀測發現,副熱帶東北太平洋的暖海溫從2013年開始出現持續增暖的現象,近期研究發現此暖海溫對短期天氣或長期氣候變異颱風都有顯著的影響。然而相較於赤道東太平洋海溫, 有關副熱帶東北太平洋海溫的時空特徵之相關研究仍相當有限. 本研究主要探討副熱帶東北太平洋的特徵, 增暖的物理機制, 以及對天氣與氣候的可能影響 分析顯示,此區域之海溫變異與太平洋經向模態密切相關。除此之外,亦受到暖化趨勢的影響(約貢獻15%之海溫變異)。小波分析進一步發現此區域海溫包含了年際及年代際變化。在年際尺度,副熱帶東北太平洋海溫增暖同時,赤道太平洋亦同時有一類似聖嬰結構之海溫增暖現象。而在年代際尺度,太平洋年代際震盪、北太平洋環流震盪以及大西洋多重年代際震盪對此區域海溫變化皆有顯著的影響。 海洋混合層熱量收支得知,此海溫近期之增暖,主要透過風-蒸發-海溫(wind-evaporation-SST, WES) 之正回饋機制。除此之外,本研究也藉由兩個個案,討論此海溫對聖嬰現象以及西北太平洋颱風活動之影響。Item 台灣區域未來降雨推估的統計降尺度穩定性研究(2020) 奚子泰; Hsi, Tzu-Tai目前CMIP5(Coupled Model Intercomparison Project Phase 5)所使用的氣候模式其空間解析度對於區域性的地區或國家(如台灣)在評估未來氣候變遷的影響時仍有所不足,此時為了克服氣候模式其解析度較低的限制,降尺度方法的運用便成為研究區域氣候的必要手段。 統計降尺度方法因其簡便且計算的需求相對較少,因此此方法已廣泛應用於全球各個區域的氣候研究上且行之有年。而統計降尺度方法在應用於未來氣候推估的降尺度時,其前提皆是假設過去(或現今)資料所建立的統計關係到未來時仍是穩定的;然而,近年來氣候變遷日趨嚴重,已有人開始質疑此無法驗證(在無未來的觀測資料情況下)的前提假設在未來是否仍成立。因此本研究採用"理想模式"("perfect model")此實驗架構利用高解析度的模式資料(動力降尺度資料)代替原本降尺度中所使用的觀測資料(因模式資料有模擬未來的部分),以驗證誤差修正氣候特徵法(Bias corrected Climate Imprint,簡稱BCCI)、誤差修正建構類比法(Bias corrected Constructed Analogues,簡稱BCCA)和誤差修正建構類比兼分位映射法(BCCA with quantile mapping reordering,簡稱BCCAQ)此三種統計降尺度方法在應用於未來的降尺度時能否遵守上述的前提假設,並比較不同統計降尺度方法其結果在現在和未來時期的表現,以及在這兩個時期表現的穩定性。 研究結果顯示,BCCA此降尺度方法降尺度後的日降雨結果在強度上皆有低估的情況,BCCI和BCCAQ的結果在強度和極端降雨指標(r1mm、rx1day、rx5day)的表現上則與原始高解析度的模式資料較相近;至於統計穩定性的評估是以平均絕對誤差的比值(未來/現在)是否大於1而定,大於1即表示統計降尺度方法在應用於未來的降尺度時,其誤差會比應用於現在時期要來的大,此也代表違反了上述的前提假設。而本研究所驗證的三種統計降尺度方法(BCCI、BCCA、BCCAQ)其比值皆大於1,其中BCCA最大,其次為BCCAQ,BCCI則最小,此也表示BCCA的統計穩定性表現較差,BCCI則表現較佳。Item 台灣夏季熱浪與伴隨大尺度環境(2014) 黃冠鈞; kuan-chun-Huang熱浪的發生往往造成了極為嚴重的災害,尤其是會造成人體極不舒適的感覺,甚至會造成死亡,例如:1995年芝加哥熱浪、2003年巴黎熱浪及2010年俄羅斯熱浪…等,隨著全球溫度持續暖化的趨勢也使得熱浪發生的頻率、強度和持續時間變得更強、更長。而在前人研究中,他們發現在歐美地區發生熱浪時,主要是由於阻塞高壓所造成,而在高壓的下沉區造成高穩定度及較低濕度的環境分布,導致在此區域會有異常高溫持續出現的情況。然而,對於在台灣地區夏季也常有熱浪發生,但對於熱浪發生時大尺度環境與中高緯度區域未必相同,因此冀望能研究分析台灣熱浪發生期間的大尺度環境的分布特徵。 前人所做的熱浪研究中對於熱浪的定義並沒有統一的標準,本論文在熱浪分析時所使用的熱浪定義,參考過去研究,是以最高溫的兩個極端百分位值加以定義,可以允許持續熱浪中短暫的降溫。我們除了針對熱浪發生的頻率、持續時間加以探討,也討論結果對選取百分位值的敏感度。而資料的使用有氣象局測站資料及美國環境預報中心的氣候預報系統再分析資料(NCEP Climate Forecast System Reanalysis, CFSR),分別從每個測站及再分析資料網格點裡定義出熱浪時段,由測站及再分析資料的分析結果,發現如果採取較高的極端百分位值,使熱浪發生的頻率為平均每年或甚至是平均1~2年才發生一次的極端事件,而熱浪平均的持續時間則是介於10~15天左右,在平均每年最早起始時間約在7月中旬開始,而平均每年最晚結束時間則接近於7月底結束,不過年際之間個別熱浪事件還是有相當大的差異。而從大尺度環境角度我們藉由分析500hpa重力位高度場、風場、垂直速度場、相對溼度場,發現在熱浪發生期間的共同特徵是太平洋高壓西伸至台灣以西,並在台灣附近形成下沉氣流與乾燥的環境。 除此之外,我們同樣選取高解析度氣候模式GFDL-HiRAM所模擬的資料分析,比較現今氣候與未來21世紀末氣候變遷下熱浪特性型態的改變。以氣候預報系統再分析結果驗證GFDL-HiRAM模式所模擬的熱浪特性,兩者在熱浪發生的頻率、平均持續時間、平均每年最早起始時間及平均每年最晚結束時間的結果相似,如果熱浪定義的兩個極端百分位值的選擇一樣,HiRAM所模擬的平均熱浪持續時間比氣候預報系統再分析的結果略短。而從模式21世紀末的未來推估結果,可以發現在未來氣候變遷下,溫度的上升會使得幾乎每年都會發生一次持續整個夏季的熱浪事件,平均熱浪持續時間的增加幅度則會是現今氣候下的10倍以上,平均每年最早起始時間同樣會提早70~80天開始,而平均每年最晚結束時間則會延後50~60天結束,由熱浪特性型態的改變,顯示在未來氣候暖化下會使得現今氣候下所定義每一、兩年才發生一次的熱浪事件變成夏季的常態。Item 太平洋赤道洋流系統之研究(2009) 王儷樵; Li-Chiao Wang太平洋(Pacific Ocean)赤道地區(140°E~80°W,20°N~20°S),主要的洋流包括:由東向西流的北赤道洋流(North Equatorial Current, NEC)、南赤道洋流(South Equatorial Current, SEC),以及由西向東流的北赤道反流(North Equatorial Countercurrent, NEC)、赤道潛流(Equatorial undercurrent, EUC)。這些洋流主要生成機制和風力、柯氏力及壓力梯度力和有關。 本論文使用GODAS(Global Ocean Data Assimilation System)模式1988~2007年的月平均資料,來研究赤道太平洋的主要洋流在正常年、聖嬰年及反聖嬰年夏冬兩季的流況變化。由模式結果我們發現,夏季時NECC與SECn緯度位置相近,因此遇上SECn後有分支北移的現象,NECC分支點的位置在聖嬰年偏東,正常年次之,反聖嬰年偏西。冬季時NECC比SECn要偏北,因此不會和SECn相遇。另外,正常年冬季出現於SECs南邊的SECC,在反聖嬰年冬季流速增強,到了聖嬰年冬季時則消失不見。 不論是正常年、聖嬰年或反聖嬰年的夏季,NEC自90°W有NECC往北匯入,流至110°W又往回匯入NECC,因此在90°W~110°W之間形成一個環流(Costa Rika Dome)。到了冬季,NEC在110°W沒有往回匯入NECC的現象,故冬季時此環流並不存在。Item 季節可預報度的特性(2005) 吳文耀研究模式在月或季節尺度的大氣可預報度時,大氣平均狀態可分為自然變化分量和邊界力分量,自然變化分量是因為大氣內部動力過程所產生,為內部的變化;邊界力分量是外部對大氣所作用,視為外部給予大氣的訊號,而內部的變化是隨機產生無法預測的雜訊,以這二者的變化去評估模式潛在的可預報度。 變異量分析的方法,將因為海表面溫度改變而產生的變異量佔總變異量的比例定義為潛在的可預報度,描繪出季節平均的可預報度分布。熱帶地區受海表面溫度影響較大,存在較高的可預報度,熱帶外地區的大氣主要受到內部動力過程主控,大多為混亂的訊號,可預報度較低。使用距平型態的相關係數方法,分別對El Nino、La Nina、平均年及其他年等,計算平均海平面氣壓場在亞洲地區(0~45N;90~150E)、降水場在東亞地區(20~45N;90~150E)及Z500(500-mb height)高度場在PNA(Pacific-North American)地區(20~70N;180~60W)的可預報度在ENSO及非ENSO年的季節性變化,藉以了解ENSO事件對可預報度的影響。 本研究主要是使用下列四個模式:ECHAM4氣候模式、CWB模式、GFDL新一代大氣海洋耦合模式及NCEP模式,模式模擬的時間都取1955年12月至2000年2月,每個系集模式都有10個個別模擬,針對降水場、海平面氣壓場及z500進行分析、探討可預報度的特性。分析結果顯示,海平面氣壓場和降水場的可預報度主要是集中在熱帶太平洋,降水場甚至更集中在赤道附近,Z500高度場則呈帶狀分佈環繞整個熱帶地區,不論哪一個變數,一般而言,模式在El Nino的可預報度比La Nina年要高,這兩者的可預報度又比非ENSO年的可預報度要高很多;可預報度的值在El Nino年的1-3月達到最高,La Nina年的可預報度比平均年要高,但是在春天時會快速的下降到和平均年差不多,稱之為春天預報障礙(Spring barrier),主要是這時候的雜訊突然增大的結果。 另外以GFDL模式在不同實驗設計下的結果來探討,在模式裡中考慮海氣交互作用和未考慮海氣交互作用的差異,實驗設計分別有MLM模擬和CTRL模擬,這兩個模擬在東赤道太平洋(15°S-15°N,172°E-South American coast)區域內都使用觀測的海溫資料,也就是說這兩個模擬同時受到ENSO事件的影響,區域外在MLM模擬則使用一個簡單的海洋混合層模式所模擬的海溫資料,而CTRL模擬所使用的SST是從MLM模擬結果長期平均,並不包含年際變化部分,以研究海氣交互作用對氣Item 東亞大氣長河與其對臺灣強降雨事件影響(2020) 吳定融; Wu, Ding-Rong大氣長河是強勁且呈狹長帶狀的水氣傳輸帶,在供應中緯度地區水資源的同時,卻也常因行經山區地帶而形成具破壞性的降雨。由於大氣長河在熱帶往中高緯度輸送水氣的水文循環過程中扮演著重要的角色,因此數十年來關於大氣長河的探討,在中緯度始終備受矚目。近年來越來越多的研究,開始以大氣長河的角度討論相對低緯度地區的水氣傳送。本研究的基礎,主要架構在前人設計的大氣長河自動偵測演算法。該客觀偵測法以圖型辨識分析垂直積分水氣傳送距平場,並擷取具大氣長河特徵的水氣輸送。 本文統計在1981年至2015年西北太平洋與東亞地區的大氣長河氣候特性,討論不同時間尺度的氣候振盪對於大氣長河的調控,歸納35年間觸陸大氣長河對於臺灣大雨事件的影響。此研究進而修改部分偵測演算法的辨識過程與輸出,並以NASA MERRA-2再分析資料計算垂直積分水氣傳送。在氣候特性上,東亞和西太平洋地區大氣長河的發生頻率與生成個數,整體而言在北半球夏季均明顯高於北半球冬季,明顯受到東亞夏季季風的影響。兩個主要的大氣長河生成區,分別位於青藏高原東南側與日本東南側的海域,但兩地大氣長河生成的機制與季節有明顯差異。東亞大氣長河的發生頻率在受到聖嬰與太平洋十年振盪等年代際影響外,本文指出北半球夏季季內振盪(Boreal Summer Intraseasonal Oscillation)對於大氣長河季內尺度變異的重要性。同時,北半球夏季季內振盪的第二模態和登陸臺灣的大氣長河數量與降雨強度有顯著關聯。根據35年的統計,在夏季約有20 %-30 %登陸臺灣的大氣長河,會在中南部山區降下大雨等級以上的雨量。在春季與冬季,位於臺灣西半部地區大雨等級以上的降雨事件約有60 %-90 %是由大氣長河貢獻。Item 東太平洋間熱帶輻合帶的年際與年代際變化(2011) 施明甫; SHIH, MING-FU熱帶海洋地區有許多對流發展,稱為間熱帶輻合帶(Intertropical convergence zone;簡稱ITCZ)。其中的東南太平洋間熱帶輻合帶(Southeast Pacific intertropical convergence zone;簡稱SITCZ)位於東太平洋赤道南方,每年2~4月才會發展對流系統。分析顯示,東太平洋赤道北方的間熱帶輻合帶(簡稱NITCZ)和SITCZ的3~4月強度有年代際變化,由於赤道南方的海表面溫度(Sea surface temperature;簡稱SST)在1982年以後大幅上升,有利對流發展,且也使負值SST南北向梯度加強,導致原本的東南風減弱較多,而使SITCZ的輻合增強。NITCZ則因為對應SST原 本已高,SST略增對於對流強度增強沒有明顯幫助。年際變化方面,本研究先分析El Nino/Southern Oscillation(簡稱ENSO)對ITCZ的影響,發現強聖嬰年時,高SST是影響對流發展的主因。而SITCZ在強反聖嬰年,因為強的SST梯度會使輻合動力機制提前於2月發生,使SITCZ於3~4月能夠顯著發展。另外在研究的分析中也顯示SITCZ區域的SST並非影響SITCZ強度的唯一機制。利用高解析度資料分析,當NITCZ區域的SST在北半球冬季及春季較高時,3~4月的NITCZ可以維持較強強度,進而利用動力機制壓抑赤道南邊的SITCZ環流,使SITCZ較弱;反之若NITCZ區域的SST在南半球夏季及秋季較低溫時,3~4月的NITCZ則會明顯減弱,動力機制壓抑赤道南邊SITCZ的情形相對不明顯,因此SITCZ會較強。Item 極端氣候指標長期變遷的高解析度推估(2010) 駱世豪; Lo,Shih How極端天氣或氣候頻率和強度的改變對自然環境和人類社會有顯著的影響。聯合國跨政府氣候變遷小組(Intergovernmental Panel on Climate Change)第四次報告中提出,對未來氣候變遷的情境推估結果,極端降雨事件的發生頻率在大多數的地區都有增加的趨勢。這些未來的預測主要是建立在氣候模式模擬極端降雨分布的分析結果,但上述推估最受爭論的地方,在於低解析度的模式模擬,往往無法正確呈現需要高時空解析度的極端天氣現象,而這對模式模擬未來極端天氣變化的可靠性就有所質疑。而解決這問題的途徑之一,是運用超高解析度的區域或全球氣候模式,這需要花去相當多的運算成本與資料儲存資源,只有極少數的氣候研究中心才能做到,但是在這種情形下,反而失去了多個氣候模式所能呈現的氣候變遷情境推估不確定性範圍。 近年來,有些運用測站或衛星觀測所整理的網格化降雨分析資料,已經能提供較高解析度和較長的涵蓋時間範圍,這些資料的時間長度足夠提供較多的極端天氣抽樣。我們可以通過統計方法瞭解觀測資料在不同尺度上的連結,並應用於極端天氣或氣候指標的降尺度方法上。利用此方法在現階段推估未來氣候變遷的低解析度氣候模式上,便可以得到極端天氣事件長期變遷的高解析度推估,並同時兼顧多個氣候模式所能呈現的不確定性範圍。Item 極端降雨相關指標在臺灣長期變化的分析:觀測、模擬及未來推估(2022) 林佩瑩; Lin, Pei-Ying根據IPCC的氣候變遷科學評估,當大氣受到暖化的影響,全球降雨型態也隨之產生改變,大部分陸地上的強降雨事件發生頻率有增加的變化,不過各地局部的變化趨勢還是有所不同。本研究以氣候變遷偵測與指標專家小組所制定的極端降雨相關指標,使用高解析度網格觀測資料,調查近60年臺灣不同季節的極端降雨特性變化;並使用兩個動力降尺度模式,分析其對於極端指標在現今氣候的模擬能力及未來變化的推估。我們發現,對於近60年的長期趨勢變化,冬季東北角極端降雨的強度跟頻率增加,且極端降雨增加的區域延伸到南部;春季則是北部降雨強度跟總降雨量增加,冬春季皆受到東北海域水氣通量輻合增強所致。梅雨季降雨天數減少,可能由於臺灣到西北太平洋一帶水氣通量輻散。颱風季臺灣附近有氣旋異常環流,南部及花蓮北部的降雨強度、大雨日數統計上顯著增加。對於現今氣候的模擬,WRF-MRI跟WRF-HiRAM在梅雨季皆和觀測資料有較低的相關係數,其餘各季的降雨指標,模式大多能模擬其空間分布。未來變化推估方面,預期春季東北部及颱風季全台降雨天數有統計上顯著的減少;梅雨季跟颱風季在西部極端降雨強度跟頻率增加。對於天數改變的原因,颱風季主要受副熱帶高壓在未來增強所致;對於極端降雨強度跟頻率的變化,則是受西南氣流增強影響。Item 比較由一般至相對極端之季節預報技術(2010) 鄭鈺靖; Yu-Ching Cheng極端的季節性變化,通常對我們的環境會造成很大的影響,所以評估各海氣耦合模式對於極端事件預報技術的特性與準確度,便可以幫助我們去修正各個模式間的誤差,以求建立更為準確的模式系統提供氣候模擬及預報。 本研究將利用DEMETER計畫中的多模式預報系統的模式資料,與世界降雨氣候計畫(Global Precipitation Climatology Project, GPCP)的觀測資料,分別利用決定性預報分析使用 Extreme Dependency Score (EDS)此種技術得分及機率性預報分析使用Relative Operating Characteristics(ROC)技術得分兩類,來針對各模式的預報技術能力作探討及分析。 在作氣候模式預報技術分析前會針對我們氣候模式的特性,將使用所技術得分的繪圖或計算方式作修正,之後再利用修正過的技術得分來作分析。 研究發現當預報技術隨著狀況由一般到相對極端時,氣候模式預報的技術是有相當程度提升,但在決定性預報中當預報的狀況達到相對極端小於4.5%後,模式的預報技術則有急遽下降的趨勢。Item 氣-海交互作用對於潛在可預報度之影響(2008) 朱容練; Jung-Lien Chu傳統潛在可預報度之分析主要以大氣環流模式(Atmospheric general circulation model;簡稱AGCM)資料作為評估的依據。然而,AGCM往往因為海洋與大氣之間並無能量交換,而高估了降水以及環流的強度,由此可知海氣交互作用所扮演之重要角色。另一方面,潛在可預報度主要在評估模式大氣對於邊界驅力的反應程度,然而,海氣耦合模式中,邊界條件與初始條件會隨著時間不斷改變,這將使利用海氣耦合模式進行潛在可預報度分析的難度提高。基於上述理由,為了釐清海氣交互作用對於潛在可預報度之影響,本研究將透過實驗設計,探討局部海氣交互作用對於潛在可預報度之影響。 研究發現,當赤道海溫變化明顯時(如ENSO期間),CTRL與MLM實驗中均顯示較高之潛在可預報度,其中又以赤道地區最為顯著;中高緯度地區,則是以PNA地區較為明顯。在季節的變化上,則是以冬季時有最高之潛在可預報度。這些結果與前人利用AGCM進行潛在可預報度分析所獲得之結論一致,換言之,即使海氣交互作用存在,大氣潛在可預報度的變化依然以ENSO年較高,所有年次之,非ENSO居後的形式呈現。由此可知,實驗中DTEP地區的海溫變化仍是主要影響全球大氣潛在可預報度的驅力。 MLM與CTRL實驗差別在於MLM實驗中允許有海氣交互作用,此作用的存在,造成二組實驗之潛在可預報度存在著些微的差距,而此些微差距透過Monte-Carlo的檢驗方式獲得信心。從變異數分析研究訊號與雜訊的結果發現,海氣交互作用的影響存在著明顯的區域性和季節變化。冬季的反應較夏季明顯。其中太平洋與大西洋的季節變化相對較大;印度洋地區則是以減弱潛在可預報度為主。 至於海氣交互作用影響潛在可預報度的運作過程,則可透過暖年減冷年合成圖進行解釋—在海氣交互作用顯著區域,大氣對於DTEP地區海溫變化一旦產生反應,局部地區的海氣交互作用即開始扮演修飾此反應的角色。修飾的作用主要有二,其一為透過熱通量之交換提供負貢獻至大氣,此作用將造成潛在可預報度之減弱;其二為維持環流強度,此作用將使MLM實驗組的潛在可預報度高於環流強度迅速減弱的CTRL實驗。 本研究比較了AGCM與耦合模式之潛在可預報度,其中使用之耦合模式為AGCM外加一混合層模式,忽略了海洋動力的影響。在未來,若能設計一組實驗,使DTEP地區以外的海洋與大氣為真正之耦合作用,將能增進海氣交互作用對於潛在可預報度影響之了解。此外,若能再加入一組AMIP方式之模擬資料,將有助於釐清海氣交互作用對於潛在可預報度之真正影響。