Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "鍾宜修"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    針對空拍影像物件偵測之改良型YOLOv7演算法研究
    (2024) 鍾宜修; Chung, Yi-Hsiu
    近幾年無人機的技術發展迅速,飛行距離越來越遠、體積也不斷縮小,甚至能自動飛行,因此能應用的範圍也越來越廣泛,例如交通監測、工業或自然環境巡檢等等。另外隨著人工智慧的興起,現在無人機也會結合人工智慧演算法協助其辨識影像。由於無人機所拍攝的影像內物件往往尺寸偏小,且無人機本身的運算支援有限,因此如何提升小物件的辨識效果且同時降低模型運算時所需的資源至關重要。本論文以YOLOv7為基礎模型進行改良,提升它對小物件的偵測效果且同時降低模型參數量及計算量,我們以VisDrone-DET2019資料集來驗證模型改良成效。總共修改五種方式,第一種方式是將ELAN (Efficient Layer Aggregation Network)替換成M-ELAN (Modified Efficient Layer Aggregation Network),第二種方式是在高階特徵層添加M-FLAM (Modified Feature Layer Attention Module),第三種方式是將特徵融合的結構從PANet (Path Aggregation Network)改成ResFF (Residual Feature Fusion),第四種方式是將模型內下採樣的模塊改成I-MP模塊 (Improved MaxPool Module),最後一種方式是將SPPCSPC (Spatial Pyramid Pooling Cross Stage Partial Networks)替換成GSPP(Group Spatial Pyramid Pooling)。綜合以上方法,將mAP (mean Average Precision)提升1%,同時模型參數量卻下降24.5%,模型計算量GFLOPs (Giga Floating Point of Operations)也降低13.7%。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback