Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "蔡顯仁"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    無機氣體表面聲波感測器研製與應用
    (2005) 蔡顯仁; Hsien-Jen Tsai
    本研究中研製一多頻道氣體表面聲波感測器(surface acoustic wave sensor, SAW)以偵測空氣中二氧化氮(nitrogen dioxide, NO2)及一氧化碳(carbon monoxide, CO),在表面聲波晶片上塗佈Ru3+/ cryptand[2,2]與Zn2+/ cryptand[2,2]辨識膜分別對NO2及CO作感測,本研究發現待測氣體與塗佈物間吸附現象為物理吸附,可反覆使用具良好再現性,並且使用壽命超過一個月;由氣體濃度效應研究中發現,本研究研製的表面聲波感測器頻率訊號與CO及NO2濃度皆有良好的線性關係,其中Ru3+/ crypatnd[2,2]及Zn2+/ cryptand[2,2]偵測NO2及CO的偵測下限分別為0.176與0.699 ppm,皆低於恕限量及排放標準。本研究亦探討環境溫度和濕度對表面聲波感測器的影響,各種空氣中有機揮發污染物對表面聲波感測器偵測NO2與CO可能造成的干擾亦被探討。 本研究亦藉由數學統計方法中的主成分分析法(principal component analysis, PCA)來確定本研究所選擇的塗佈物足以分辨NO2及CO,由研究結果顯示在二維的X-Y主成份分數散佈圖(PCA scores plot),其中NO2與CO各自成群且相互分離即可證明確實足以分辨NO2及CO。另外亦使用類神經網路中監督型倒傳遞神經網路(back propagation network, BPN)來作確認及辨別NO2和CO,倒傳遞神經網路系統亦顯示所選的表面聲波塗佈物Ru3+/ crypatnd[2,2]和Zn2+/ cryptand[2,2]確可分辨NO2及CO作為定性分析,多變項複迴歸分析技術(multivariate multiple regression analysis)亦用來作定量分析。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback