Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "李惠雅"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    以FPGA實現基於部分距離搜尋法之競爭式學習系統
    (2008) 李惠雅; Hui-Ya Li
    本論文針對k贏家通吃競爭式學習法之場域可程式化閘陣列(FPGA)實作提出一新演算法。k個得以進行更新的獲勝神經元,為每一個輸入向量在小波域(wavelet domain)中執行部分距離搜尋(partial distance search)所找出的最近似者。在大多數的應用裡,PDS以軟體方式被用於神經元搜尋的加速。此章節將提出一個適於硬體實現的新PDS演算法。此演算法使用子空間搜尋(subspace search)、有限精度計算(finite precision calculation)、多係數累積(multiple-coefficient accumulation)、和查表式除法(lookup-table based division)等技巧來有效降低面積複雜度與運算延遲。也提出ㄧ個新的排序架構,用於PDS步驟後k個獲勝神經元的判定。 在此提出的硬體架構將以專用邏輯區塊電路(custom logic block)的方式內嵌於Nios軟核心中央處理器的算術邏輯單元(ALU)中。Nios處理器所提供的客製指令(custom instruction)便是用於存取專用邏輯區塊電路的方式。我們已測量出,Nios軟核心中央處理器執行用於「k贏家通吃競爭式學習訓練」之部分距離搜尋程式客制指令所需的CPU時間。實驗結果顯示CPU時間低於未搭配部份距離搜尋硬體電路的Pentium IV處理器。
  • No Thumbnail Available
    Item
    分群演算法之超大型積體電路架構研究
    (2012) 李惠雅; Hui-Ya Li
    本論文對於c-平均值(c-means)、競爭式學習(competitive learning)、模糊c-平均值(fuzzy c-means),以及帶空間約束之模糊c-平均值(fuzzy c-means with spatial constraint)等多種分群演算法分別提出硬體架構。這些架構皆已在場域可程式化閘陣列(Field Programmable Gate Array,FPGA)裝置上實作建構出適用於分群(clustering)的可程式化系統晶片(System on Programmable Chip,SOPC)系統。 由於分割(partitioning)與質心計算(centroid computation)等運算全為管線化運作,故本文所提出的c-平均值架構可同時處理多筆訓練向量(training vector)。查表式除法器(lookup table based divider)則用以減少面積成本及質心計算的延遲。 文中另提出兩種針對k贏家全取(k-winners-take-all,kWTA)操作的硬體實現。第一種架構,經由在小波域(wavelet domain)中執行部分距離搜尋(partial distance search,PDS)來找出關於每一個輸入向量的k個贏家。一種單純利用查表來做計算的硬體除法器則用以構成神經元的更新程序。部分距離搜尋模組及除法器均採取有限精度計算(finite precision calculation)來降低部分距離搜尋及硬體除法器的面積成本。另採用子空間搜尋(subspace search)及多係數累積(multiple-coefficient accumulation)等技巧來降低PDS的運算延遲。第二種則是一個高效率的管線化架構,可同時進行不同訓練向量的kWTA競賽。此管線化架構使用了一個嶄新的碼字交換機制(codeword swapping scheme),使那些在競賽過程中落敗的神經元可立即投入後續訓練向量的競賽。 文中所提出的模糊c-平均值架構是個高效率的平行計算方案。此架構利用查表式除法來降低計算權重值(membership coefficient)與質心的面積成本及計算複雜度。為了避開龐大的儲存需求,權重矩陣(membership coefficient matrix)及質心的更新,從過去慣用的迭代法,改為合併成單一步驟。這樣的架構還延伸到帶空間約束之模糊c-平均值的實現。並採用查表法來處理開根號運算,以便放寬模糊度(degree of fuzziness)的限制。 實驗結果顯示文中所提出的架構具有成本效益(cost-effective),且在面對龐大的資料集合及/或眾多的群集數時,較其他軟硬體實現能有更高的加速(speedup)。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback