Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "吳昌鴻"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Existence and Uniqueness of Traveling Waves for a Monostable 2-D Lattice Dynamical System
    (2007) 吳昌鴻; Chang-Hong Wu
    我們研究二維度的單穩定型格子動態系統的行進波。首先我們證明存在一個最小的速度使得行進波存在的充分必要條件是行進波的速度大於或等於此最小的速度。然後我們證明給定一個速度後,在不考慮平移的情況下,行進波的波形是唯一的。更進一步的,我們知道行進波的波形是嚴格單調的。
  • No Thumbnail Available
    Item
    網格動態系統的行進波
    (2010) 吳昌鴻; Chang-Hong, Wu
    在本論文中,我們要討論在一維度網格中兩物種的競爭模型。此模型是用網格動態系統(Lattice dynamical system)來描述。此模型起源於研究當物種的居住環境是區塊片狀時,有遷移(migration)能力的兩物種之間的競爭。 第一部份,我們考慮單一穩定型(monostable)的情形。我們首先證明存在一個最小的波速(minimal wave speed)使得行進波(traveling wave)存在的充要條件為其波速大於或等於此最小波速。接著,在適當的條件下我們能夠利用系統的參數來刻劃出最小波速。然後,我們證明任何行進波的波形(wave profile)都是嚴格單調的。更近一步,在某些條件下,給定波速後,行進波的波形是唯一的(在不考慮平移的情況下)。最後,在數值的觀點下,我們推論當網孔大小(mesh size)趨近零時,離散型最小波速的收斂性。 第二部份,由於此系統有行進波的存在且此系統滿足比較原理(comparison principle),我們可以造出某種全域解(entire solution),其解的行為像兩個行進波從x軸兩側隨時間向彼此方向移動。 最後一個部份,我們將考慮在雙穩定型(bistable)的情形下,波的傳遞(wave propagation)。我們證明只要系統的兩個遷移係數(migration coefficient)夠小時,其(非單調)穩定解(stationary solution)將會存在。而且,波的傳遞失敗 (propagation failure) 現象會產生。在單一的方程系統中,這樣的結果J.P. Keener, SIAM J. Appl. Math. (1987) 已經提出。接著,我們也證明非零波速的行進波的波形必定是嚴格單調的。更進一步,我們也完整的給出行進波的波形在兩端的漸近行為。於是我們可以給出波速的先驗估計。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback