Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "何冠勳"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    語音增益之研究 — 適應性與可解釋性
    (2024) 何冠勳; Ho, Kuan-Hsun
    本論文深入探討語音增益(SE)領域,這是一個通過減少噪音和失真來精煉語音信號的關鍵過程。借助深度神經網絡(DNNs),本研究解決了兩個基本挑戰:1)探索SE和自動語音辨識(ASR)系統之間的兼容性,以及2)增強基於DNN的SE模型的可解釋性。動機來源於SE模型可能在運作中引入的偽影(Artifacts),可能危及ASR性能,因此需要重新評估學習目標。為應對這一問題,提出了一種新穎的噪聲和偽影感知損失函數(NAaLoss),它在保持SE質量的同時,顯著提高了ASR性能。另外,在基於DNN的SE方法中,我們探索了一種新穎的設計,即基於Sinc的卷積(Sinc-conv),以在解釋性和時域方法的學習自由之間取得平衡。基於此,我們設計了重塑的Sinc卷積(rSinc-conv),不僅提升了SE的最新技術水平,還揭示了神經網絡在SE期間優先考慮的特定頻率組合。這項研究做出了實質性的貢獻,包括定義1)SE中的處理偽影,展示NAaLoss的有效性,通過視覺化偽影獲取洞見,並填補SE和ASR目標之間的差距。2)為SE量身定制的rSinc-conv的開發在訓練效率、濾波器多樣性和可解釋性方面提供了優勢。3)解析神經網絡的優先關注,對不同形狀濾波器的探索以及對各種SE模型的評估進一步促進了我們對SE網絡的理解和改進。總的來說,這項研究旨在為SE領域的討論做出貢獻,並為在現實情境中實現更強大和高效的SE鋪平技術道路。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback