Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. 科技與工程學院
  3. 電機工程學系
  4. 教師著作
  5. Browse by Author

Browsing by Author "C.-C. James Hsu"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    H-inf. tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach
    (IEEE Systems, Man, and Cybernetics Society, 2002-08-01) W.-Y. Wang; M.-L. Chan; C.-C. James Hsu; T.-T. Lee
    A novel adaptive fuzzy-neural sliding-mode controller with H∞ tracking performance for uncertain nonlinear systems is proposed to attenuate the effects caused by unmodeled dynamics, disturbances and approximate errors. Because of the advantages of fuzzy-neural systems, which can uniformly approximate nonlinear continuous functions to arbitrary accuracy, adaptive fuzzy-neural control theory is then employed to derive the update laws for approximating the uncertain nonlinear functions of the dynamical system. Furthermore, the H∞ tracking design technique and the sliding-mode control method are incorporated into the adaptive fuzzy-neural control scheme so that the derived controller is robust with respect to unmodeled dynamics, disturbances and approximate errors. Compared with conventional methods, the proposed approach not only assures closed-loop stability, but also guarantees an H∞ tracking performance for the overall system based on a much relaxed assumption without prior knowledge on the upper bound of the lumped uncertainties. Simulation results have demonstrated that the effect of the lumped uncertainties on tracking error is efficiently attenuated, and chattering of the control input is significantly reduced by using the proposed approach

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback