第二章 實驗部分

第一節 儀器和程式軟體

- 1. 元素分析儀(委託中研院化學所)
 Perkin-Elmer 240 EA
- 2. X 光單晶繞射儀

荷蘭 Nonius Kappa CCD diffractometer

- 3. 單晶結構解析套裝軟體
 WinGX Program System^[44] (含 Shelx97,^[45] Platon,^[42] Sir92 等軟體)
- 4. 結晶結構繪圖軟體 Diamond 3.1/Crystal Impact^[46]
- 5. 粉末 X 光繞射儀 Siemens D-5000 diffractometer
- 6. 磁性分析儀 (委託成大化學系)

Squid magnetometer (Quantum Design, MPMS-7)

7. 熱重量分析儀

Perkin-Elmer TGA-7 analyzer

試藥	化學式	供應廠商
氯化銅 Copper(Ⅱ) chloride dihydrate	CuCl ₂ ·2H ₂ O	Jessen
硝酸銅 Copper(Ⅱ) nitrate tetrahydrate	Cu(NO ₃) ₂ ·4H ₂ O	Acros
硝酸鈷 Cobalt(Ⅱ) nitrate hexahydrate	$Co(NO_3)_2 \cdot 6H_2O$	Acros
氯化亞鈷 Cobalt(Ⅱ) chloride hexahydrate	CoCl ₂ ·6H ₂ O	Merck
硝酸鎘 Cadmium(Ⅱ) nitrate tetrahydrate	$Cd(NO_3)_2 \cdot 4H_2O$	Acros
氯化鎘 Cadmium(Ⅱ) chloride hemipentahydrate	$CdCl_2 \cdot 2.5H_2O$	Acros
過氯酸鋅 Zinc(Ⅱ) perchlorate hexahydrate	Zn(ClO ₄) ₂ ·6H ₂ O	Acros
H ₂ CA (chloranilic acid)	$C_6H_2Cl_2O_4$	Acros
dptz (3,6-di-2-pyridyl-1,2,4,5-tetrazine)	$C_{12}H_8N_6$	Aldrich
phz (phenazine)	$C_{12}H_8N_2$	Acros
2,2'-bpym (2,2'-bipyrimidine)	$C_8H_6N_4$	陳香吟合成
1,3-bpp (1,3-bis(4-pyridyl)propane)	$C_{13}H_{14}N_2$	Acros
4-H-ptz (5-(4-pyridyl)tetrazole)	$C_6H_5N_5$	葉達夫博士合成

DMF (dimethylformamide)	C ₃ H ₇ NO	Lancaster
THF (tetrahydrofuran)	C_4H_8O	Acros
丙酮(acetone)	CH ₃ COCH ₃	Acros
乙醇 (ethanol)	C ₂ H ₅ OH	Mallinckrodt
氯苯 (chlorobenzene)	C ₆ H ₅ Cl	Acros
氯仿(chloroform)	CHCl ₃	Acros
己烷 (hexane)	C ₆ H ₁₂	Acros
氰甲烷 (acetonitrile)	CH ₃ CN	Acros
二氯乙烷 (dichloromethane)	$C_2H_4Cl_2$	Acros

圖 2.1 本論文所用有機配子的結構圖

第三節 通用的實驗過程

配子 4-H-ptz 是根據文獻發表方式所合成的,^[59] 其餘化學藥 品皆為直接向廠商購買得到,使用前沒有做更進一步純化的工 作。熱重量分析儀 (Perkin-Elmer TGA-7 analyzer) 是在氦氣下操 作完成。粉末繞射儀 (Siemens D-5000 diffractometer) 是在 40 kV (30 mA)下,使用 Cu-K α (λ = 1.5406 Å)為光源,以 θ 角每次 0.02°、 掃瞄 1 秒的條件下進行。磁性測量儀 (SQUID magnetometer (Quantum Design, MPMS-7)) 的測量條件為:取結晶性的待測物 在磁場強度 1.0 kG下,溫度在 2.0-300.0 K 範圍內測量。樣品浸 在蠟油 (eicosane wax)中,以減少力矩的效應。並用帕斯卡常數 (Pascal's constants)作逆磁性的校正 (diamagnetic corrections)。 [^{811]} 磁性分析結果詳見附錄一。

第四節 合成與鑑定

$- \cdot \{ [Cu_3Cl_2(4-ptz)_4(H_2O)_2] \cdot 3DMF \cdot 5H_2O \}_n (1)$

將 CuCl₂·2H₂O (0.10 mmol) 和 5-(4-pyridyl)tetrazole (4-H-ptz, 0.13 mmol) 溶於 DMF (8 mL)中,並攪拌約十五分鐘。室溫下, 將此溶液靜置數天得深藍色、斜角形的晶體。將晶體過濾後,以 去離子水和乙醇清洗,並在空氣中自然乾燥,產率 61 %(以 4-H-ptz 用量為準)。元素分析(%),實驗值:C,33.59;H,4.51;N 25.66,(理 論值: C, 33.27; H, 4.31; N, 27.04,以實驗式 Cu₃C₃₃H₅₁Cl₂O₃N₂₃O₁₀ = [Cu₃Cl₂(4-ptz)₄(H₂O)₂]·3DMF·5H₂O 做基準)。經粉晶繞射測量發 現繞射圖譜和單晶繞射結構分析結果十分吻合。經溶解度測試發 現,這些深藍色晶體並不溶於一般的溶劑,如:水、乙醇、丙酮、 THF、或 DMF 等。另外也發現,這些晶體會因為緩慢失去孔洞中 的客分子,結晶性會漸漸地變差。由 X-光單晶繞射實驗分析很容 易可以決定多孔性的聚合主結構{[Cu₃Cl₂(4-ptz)₄(H₂O)₂]}_n;然而, 由於排列位置的規則性不足,客分子的位置無法由此準確定出。 經過熱重量分析,找出客分子的含量比例,分析結果顯示:加熱 至 220 ℃ 時, 會有 26 %的重量漏失, 符合每單位化學式中含有 3 個 DMF 和 5 個 H₂O 分子。因此,我們結合元素分析、熱重量分

析和晶體繞射分析等實驗結果,將化合物 1 的化學式定為 {[Cu₃Cl₂(4-ptz)₄(H₂O)₂]·3DMF·5H₂O}_n。

$= \{ [Cu_2(CA)_3] [(H_3O)_2(phz)_3] \cdot G \}_n (2, G = 2CH_3COCH_3 \cdot 2H_2O) \}$

在室溫下,很小心地將以下三種溶液依序分層隔開放置(上層 溶液:取 chloranilic acid (H₂CA, 0.6 mmol) 溶於丙酮 (6 mL)中; 中層溶液:取 phenazine (phz, 0.6 mmol) 溶於 THF (2 mL)中;下層 溶液:取Cu(NO₃),·4H₂O(0.4 mmol) 溶於 2.5 mL 的水中)。將此 三層的溶液擴散反應系統靜置約一個星期,黑紫色的六角柱狀晶 體就會產生,但是,產物旁邊附有一些未知成分的黑色粉末。經 人工分離,得到六角柱狀晶體,以去離子水和乙醇清洗後,在空 氣中自然乾燥,產率 65 % (以 H₂CA 為基準)。經粉晶繞射測量, 發現繞射圖譜和單晶繞射結構分析結果十分吻合。元素分析(%): 實驗值: C, 49.24; H, 2.94; N, 5.55, (理論值: C, 48.73; H, 3.14; N, 5.68 , $C_{60}H_{46}Cl_6Cu_2N_6O_{18} = [Cu_2(CA)_3][(H_3O)_2(phz)_3] \cdot 2CH_3COCH_3 \cdot$ 2H₂O 做基準)。經溶解度測試,發現這些黑紫色晶體不溶於一般 的溶劑,如:水、乙醇、丙酮、THF、或 DMF 等。若遇到鹼性的 物質,如氫氧化鈉水溶液,則結構立刻崩解!曝置在空氣中,晶 體的穩定度相當好,雖然經過相當長,其結晶性和形狀都能維持 得很好。經 X-光單晶繞射結構分析顯示,主結構 {[Cu₂(CA)₃][(H₃O)₂(phz)₃]}_n十分明確,而客分子則位置不規則,其 種類和數目無法由此定出。由熱重量分析發現,加熱至200°C左 右,會有約9.5%的客分子的重量漏失,符合每單位化學式中含有 2個丙酮和2個水分子存在的推論。因此,結合元素分析、熱重量 分析和單晶繞射結構分析等實驗結果,將化合物2的化學式定為 {[Cu₂(CA)₃][(H₃O)₂(phz)₃]·2CH₃COCH₃·2H₂O}_n。

$\leq \langle [Cu_2(CA)_3][(H_3O)_2(phz)_3] \rangle_n$ (3)

在化合物2的晶體中,選取一個品質優良、外型完整的單晶。 略微清洗後,很小心地將這個單晶黏在細玻璃棒上,並注意 AB 膠只能黏在晶體下端。將此單晶置於真空系統下(Schlenk tube), 用以抽離孔洞中的客分子。經過 24 小時後,取出晶體並立刻以 AB 膠裹住,以隔絕空氣和濕氣;隨即上機,進行單晶繞射儀的分 析。單晶結構分析結果顯示,孔洞中的客分子大幅減少了。另外 也準備一些未含客分子的化合物2(即化合物3),以進行熱重量 分析,分析結果亦符合單晶繞射分析的結果(詳見於第四章討論)。 四、 { $[M_2(CA)_3][(H_3O)_2(phz)_3] \cdot G$ }_n (M = Cd, 4; M = Zn, 5; M = Co,

6; $G = 2CH_3COCH_3 \cdot 2H_2O$)

製備化合物 4-6 的方法和條件類似化合物 2 的製備過程,僅 差 在 起 始 物 分 別 改 成 Cd(NO₃)₂·4H₂O、 Zn(ClO₄)₂·6H₂O、 和 Co(NO₃)₂·6H₂O;但是,這三種產物的晶體比較小,而且混雜了更 多量的不明成分黑色粉末。這三個化合物可以找到品質很好的單 晶作晶體結構分析,但是,要能夠完全分離出足量的晶體就變得 十分困難了。故這三個化合物僅進行晶體結構分析。由單晶繞射 結構分析結果來看,這三個化合物和化合物 2 一樣,屬於同型結 構(isostructures),只差在金屬中心的種類不同而已。

$\mathcal{F}_{n} \sim \{ [Cd_{3}(CA)_{3}(dptz)_{2}(H_{2}O)_{2}] \cdot 2THF \cdot 7H_{2}O \}_{n} (7)$

在室溫下,很小心地將兩種溶液依序分層隔開放置(上層溶 液:取H₂CA (0.1 mmol)和 dptz (0.1 mmol)溶於丙酮和 THF (6 mL/6mL)的混合溶液中;下層溶液:取 CdCl₂·2.5H₂O (0.1 mmol)溶 於 2 mL 的水中)。將此兩層的溶液擴散反應系統靜置,約三個星 期後,深紅色的斜方狀晶體就漸漸產生。將產物過濾,並用去離 子水和乙醇清洗,放在空氣中自然乾燥,產率約 30%(以 H₂CA 為基準)。元素分析(%):實驗值:C,34.72;H,3.20;N,9.36,(理 論值:C,34.53;H,3.01;N,9.67,以實驗式C₅₀H₅₂Cd₃Cl₆N₁₂O₂₃ =
[Cd₃(CA)₃(dptz)₂(H₂O)₂]·2THF·7H₂O 做基準)。經過溶解度測試,
發現這些深紅色晶體不溶於一般的溶劑,如:水、乙醇、丙酮、
THF、或 DMF 等。經 X-光單晶繞射分析,即可決定化學式為
{[Cd₃(CA)₃(dptz)₂(H₂O)₂]·2THF·7H₂O₃。

六、{ $[Cu_2(CA)_2(2,2'-bpym)] \cdot 2DMF$ }_n (8)

在室溫下,很小心地將兩種溶液依序分層放置(上層溶液: 取 H₂CA (0.2 mmol) 和 2,2'-bpym (0.1 mmol) 溶於丙酮和 DMF (6 mL/6mL)的混合溶液中;下層溶液:取 CuCl₂·2H₂O (0.2 mmol) 溶 於 2 mL 的水中)。將此兩層的溶液擴散反應系統靜置,經過約四 個星期,深紅色的塊狀晶體就會產生了。產物經過濾分離後,用 去離子水和乙醇清洗,在空氣中自然乾燥,產率約 45 %(以 H₂CA 為基準)。元素分析(%),實驗值:C,36.82;H,2.15;N,9.78,(理 論值:C,36.94;H,2.38;N,9.94,以實驗式 C₂₆H₂₀Cl₄Cu₂N₆O₁₀ = [Cu₂(CA)₂(2,2'-bpym)]·2DMF 為基準)。經過溶解度測試發現,這 些深紅色晶體並不溶於一般的溶劑,如:水、乙醇、丙酮、THF、 或 DMF 等。經 X-光單晶繞射分析,即可決定化學式為 {[Cu₂(CA)₂(2,2'-bpym)]·2DMF $\{n_0$ $+ \{ [Cd_6(CA)_9] \cdot (H-1, 3-bpp)_4 \cdot (H_3O)_2 \cdot (H_2O)_8 \cdot (CH_3CN)_4 \}_n (9) \}$

在室溫下,很小心地將兩種溶液依序分層放置(上層溶液: 取 H₂CA (0.2 mmol) 和 1,3-bpp (0.1 mmol) 溶於丙酮和 CH₃CN (6 mL/6mL)的混合溶液中;下層溶液:取CdCl₂·2.5H₂O(0.2 mmol) 溶 於2mL的水中)。將此兩層的溶液擴散反應系統靜置,約經過四 個星期後,紅黑色的柱狀晶體就會產生,產率並不高,約<5%, 而且不明成分的黑色粉末仍很多。挑選適合上機的單晶,經X-光 單 式 定 晶 繞 射 分 析 , 將 化 學 為 {[Cd₆(CA)₉]·(H-1,3-bpp)₄·(H₃O)₂·(H₂O)₈·(CH₃CN)₄}_n;不過,這顆晶 體結構的客分子部分仍有位置不規則(disordered)的情形。另外, 因為這個反應系統所產生的產物另外還會含有多量不明成分的黑 色粉末物體,分離較為困難,所以要得到足量的樣品並不容易, 故僅得晶體結構分析資料,以作結構比較之用。

八、{ $[Cd(CA)_2]$ ·2NH₂(CH₃)₂}_n(10)

在室溫下,很小心地將兩種溶液依序分層放置(上層溶液: 取H₂CA (0.5 mmol) 溶於丙酮和 DMF (6 mL/6mL)的混合溶液中; 下層溶液:取CdCl₂·2.5H₂O (0.25 mmol) 溶於 2 mL 的水中)。將 此兩層的溶液擴散反應系統靜置,約經過三個星期後,黑色、鑽 石形的晶體就會產生。產物過濾分離後,用去離子水和乙醇清洗 後,在空氣中自然乾燥,產率75% (以H₂CA為基準)。元素分 析 (%),實驗值:C,30.96;H,2.79,N,4,89(理論值:C,31.07;H,2.61; N,4.53,以實驗式C₁₆H₁₆CdCl₄N₂O₈ = [Cd(CA)₂]·2NH₂(CH₃)₂ 作計 算)。經溶解度測試,發現這些黑色晶體並不溶於一般的溶劑之 中,如:水、乙醇、丙酮、THF、或 DMF 等。經 X-光單晶繞射 分析,即可決定化學式為{[Cd(CA)₂]·2NH₂(CH₃)₂}_n。有趣的是,這 個反應中的部分溶劑分子 DMF 在反應中會分解掉,再經過酸化後 成為結構中的陽離子;也唯有經過如此的步驟,這個結構才能產 生(詳見於第四章討論)。

九、[Cd₄Cl₄(pcaph)₄]・4H₂O (11)

在室溫下,很小心地將兩種溶液依序分層放置(上層溶液: 取 dptz (0.1 mmol) 溶於 10 mL 的 DMF 中;下層溶液:取 CdCl₂·2.5H₂O (0.1 mmol) 溶於 2 mL 的水中)。將此兩層的溶液擴 散反應系統靜置在通風良好、光線充足的地方,經緩慢擴散反應 後,溶液漸漸混合。起初,溶液為深紅色,約經過兩個多月,溶 液慢慢轉為淺黃色,並有很少量黃色的斜角形晶體產生,產率不 高,約 < 3%。挑出適合的單晶,經X-光單晶繞射分析,即可決

定化學式為[Cd₄Cl₄(pcaph)₄]·4H₂O。因為反應產物的產率很低,且 反應條件不好控制,耗時甚久,故僅完成晶體的結構分析。另外 在反應的中期,也可以發現到另外一種晶體,是配子 dptz 的衍生 物,這個結果可以配合用來解釋 dptz 配子在反應中所能產生的變 化(詳見第四章討論)。

第五節 X-光單晶結構解析作業

甲、簡要的單晶結構解析流程

一、選取品質好、大小適中的單晶(0.1~0.5 mm)。

二、用 AB 膠將晶體固定在細玻璃棒上,待乾燥後上機。

三、初步收集繞射數據,決定晶格常數(晶系和 $abc\alpha \beta \gamma$)。

四、決定收集繞射數據的條件和範圍。

五、開始收集繞射點強度數據(hkl & intensity)。

六、數據處理(Integration & Data reduction 等)。

七、依強度數據的系統消失(Systematic absence)決定空間群。

八、以直接法 (direct methods) 找出相位。

九、經富立葉合成(Fourier synthesis)得到粗略結構模型。

十、精算粗略模型,得到粗略模型的 R 值 (reliability factors)。

十一、再經富立葉合成得到 different Fourier map, 並找出其餘的部分結構。

十二、判定是否為合理的正確結構,若不合理,則需再考慮空

間群、相位是否有誤,才能再作嘗試。

十三、若結果仍合理,則重複步驟十一和步驟十,直到得到完

整合理的結構。

十四、調整精算的變數,得到最後結構的精算數據。

乙、Nonius Kappa CCD 簡要上機流程:

- Position goniometer : zero/start
- \Rightarrow Mount a crystal (with A & B glues, on a glass fiber)
- Ξ · Crystal mounting position/center
- 四、Determinate unit cell (crystal system, $a b c \alpha \beta \gamma$)
 - 1. [ccd@nonius]\$cd diska
 - 2. [ccd@nonius]\$mkdir chxxxx
 - 3. [ccd@nonius]\$cd chxxxx
 - 4. determine unit cell/ make scan set/ strategy OK/OK/OK determine cell (4 min to go) / run index succeeded
 - 5. run DENZO-SMN AUTO Dark Curr calculation set up data files {i01####.kcd(1-10)} Add set/ select/ display/ peak search/ frame (ten times) OK Index/ refine/ integrate
 - 6. Index (indexing) Fit all/ refine/ integrate sets/ quit/ quit/ quit/ quit/ save
 - 五、Collect data (images)
 - [ccd@nonius]\$supergui collect images (peak searching) OK (overflows ? second) Make scan set (maxθ 27.5) OK/ apply/ cancel/ more options OK (i010001.x) Strategy/ OK Calculating strategy OK/ OK Collect data Finish/ OK/ save
 - 六、Solve the structure (maXus program)

scale raw data import kappaced.CIF determine space group determine raw structures/shelx92, shelx97, sir92 ... etc. 丙、結構解析細部作業:

化合物 1-11 的晶體數據和精算結果,列於表 2.1-2.11,各化 合物的解析作業敘述如下:

- -、將 Nonius Kappa CCD 繞射儀所收集到的繞射數據以
 DENZO^[47]程式積分成 SHELX 格式的繞射點檔案,並進行數 據的校正 (Lorentz and Polarization effect)。
- 二、利用 WINGX, PLATON 和 SHELX 套裝軟體,以 Multiscan^[48] 方法進行吸收校正,採用直接法解出各結構,再用全矩陣最 小平方法(full-matrix least squares technique)對結構因子的 平方(F²)進行精算。
- 三、 結構解析精算處理:

 化合物 1:非氫原子皆以非均向熱震動參數(anisotropic displacement parameters)來精算,芳香環上的氫原子以理論 模型(riding model)進行精算。由 D-map 上可以找到數個 殘餘電子密度,其位置皆位於結構的孔洞中;這些電子密度 均用氧原子來標定,並以均向熱震動參數作最後的精算。水 分子和客分子的任何氫原子,因位置難以定出,所以這些氫 原子並不包含在最後的精算中,但仍列於簡式。

2. 化合物 2: 主結構的非氫原子以非均向參數進行精算,其

中的氫原子以理論模型(riding model)進行精算;水合質子 (hydronium ion)上的氫原子由 D-map 上找出,並以均向熱 震動參數來精算。除此之外,在最終的 D-map 上仍有一個 較大的殘餘電子密度,並位於結構的孔洞之中,但無法定出 合理確定的客分子結構。客分子的種類和數目乃藉由熱重量 分析和元素分析得知,列在簡式內。

 化合物3:處理的方式同化合物2,唯經過抽真空處理, 其殘餘電子密度最大僅有0.78 e/Å³,明顯小了很多,結果顯 示,客分子可能被大幅抽離。這個結果另以熱重量分析加以 佐證(詳見第四章討論)。

4. 化合物 4-6 和化合物 2 為同型結構 (isostructures), 處理 方式相近。

5. 化合物 7:主結構的所有非氫原子皆以非均向參數進行精算,芳香環上的氫原子以理論模型(riding model)處理。孔洞中的客分子可以明確定出為水和 DMF,非氫原子部分以非均向參數作精算,而客分子的氫原子則仍無法由 D-map上找到,所以不列入精算,但仍列入簡式內。

 6. 化合物 8:所有非氫原子皆以非均向參數進行精算,所有 的氫原子也均以理論模型(riding model)處理。孔洞中的客

分子可以很明確地定出為 DMF 分子。最終精算完畢後,由 D-map 來看,並無其他有意義的電子密度存在。

7. 化合物 9:主結構的所有非氫原子都以非均向參數進行精算。孔洞的客分子種類較多,依種類作個別處理:1,3-bpp 配子上非氫原子以非均向參數進行精算,其氫原子以理論模型(riding model)處理;CH₃CN 客分子,非氫原子以非均 向參數精算,氫原子以理論模型(riding model)處理;其餘 幾個殘餘電子密度以氧原子標定,其上的氫原子則無放入。 雖然欲對孔洞中的客分子作解析,然而,不規則的現象仍然 很嚴重,故這個結構的 R 值依然很大。

8. 化合物 10:結構的所有非氫原子皆以非均向參數進行精算,氫原子以理論模型(riding model)處理。此結構十分明確,孔洞中的陽離子也可以確定為 NH₂(CH₃)₂。殘餘電子密度亦非常的小。

9. 化合物 11:主結構的所有非氫原子皆以非均向參數進行 精算,其餘氫原子以理論模型(riding model)處理。主結構 之外仍有少許殘餘電子密度,但無法確定為何種分子,不列 入精算之中。

Chemical formula	$[Cu_3Cl_2(4\text{-}ptz)_4(H_2O)_2]\cdot 3DMF\cdot 5H_2O\}_n$	
Empirical formula	$C_{33}H_{51}Cl_2Cu_3N_{23}O_{10}\\$	
Formula weight	1191.49	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	orthorhombic	
Space group	Pnmn	
Unit cell dimensions	a = 12.3305(2) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 15.5069(3) Å	$\beta = 90^{\circ}$
	c = 15.6412(3) Å	$\gamma = 90^{\circ}$
Volume	2990.72(9) Å ³	
Ζ	2	
Density (calculated)	1.323 Mg/m ³	
Absorption coefficient	1.209 mm^{-1}	
<i>F</i> (000)	1222	
Crystal size	$0.12\times0.10\times0.08~mm^3$	
Theta range for data collection	4.12 to 27.49°	
Index ranges	-16<=h<=11, -20<=k<=2	20, -20<=l<=16
Reflections collected	19921	
Independent reflections	3538 [<i>R</i> (int) = 0.0512]	
Completeness to theta = 27.49°	99.4%	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.8158 and 0.744	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	3538 / 0 / 147	
Goodness-of-fit on F^2	1.060	
Final R indices $[I > 2 \text{sigma}(I)]$	R1 = 0.0579, wR2 = 0.171	6
<i>R</i> indices (all data)	R1 = 0.0725, wR2 = 0.1830	
Extinction coefficient	0.0056(18)	
Largest diff. peak and hole	0.679 and $-0.574 \text{ e.}\text{\AA}^{-3}$	

表2.2	化合物	2	的晶體數據和精算結果

Chemical formula	${[Cu_2(CA)_3(H_3O)_2(p]]}$	hz)3]·2CH3COC	$H_3 \cdot 2H_2O_n$
Empirical formula	$C_{60}H_{40}$	$_6\mathrm{Cl}_6\mathrm{Cu}_2\mathrm{N}_6\mathrm{O}_{18}$	
Formula weight	1478.8	31	
Temperature	293(2)) K	
Wavelength	0.7107	73 Å	
Crystal system	Trigor	nal	
Space group	P-3 1	m	
Unit cell dimensions	<i>a</i> = 13	.7593(2) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 13	.7592(2) Å	$\beta = 90^{\circ}$
	c = 9.1	1869(2) Å	$\gamma = 120^{\circ}$
Volume	1506.2	22(5)Å ³	
Ζ	1		
Density (calculated)	1.630	Mg/m ³	
Absorption coefficient	1.052	mm^{-1}	
<i>F</i> (000)	752		
Crystal size	0.38 ×	$0.38 \times 0.18 \text{ mm}$	n^3
Theta range for data collection	n 4.44 to	o 27.48°	
Index ranges	-11<=	≈h<=15, −11<=k	K<=16, −11<=l<=8
Reflections collected	4953		
Independent reflections	1233 [R(int) = 0.0381]
Completeness to theta $= 27.4$	3° 99.2 %	ó	
Absorption correction	Semi-	empirical from	equivalents
Max. and min. transmission	0.77 a	nd 0.6348	
Refinement method	Full-m	natrix least-squa	ares on F^2
Data / restraints / parameters	1233 /	0 / 70	
Goodness-of-fit on F^2	1.290		
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]$] R1 = 0	0.0522, wR2 = 0	0.1973
R indices (all data)	R1 = 0	0.0585, wR2 = 0	0.2017
Extinction coefficient	0.021((8)	
Largest diff. peak and hole	1.247	and -0.454 e.Å	-3

В

Chemical formula	[Cu ₂ (CA) ₃ (H ₃ O) ₂ (phz) ₃]	n
Empirical formula	$C_{54}H_{30}Cl_6Cu_2N_6O_{14}$	
Formula weight	1326.62	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Trigonal	
Space group	<i>P</i> −3 1 <i>m</i>	
Unit cell dimensions	a = 13.7565(4) Å	$\alpha = 90^{\circ}$
	b = 13.7564(4) Å	$\beta = 90^{\circ}$
	c = 9.1544(5) Å	$\gamma = 120^{\circ}$
Volume	$1500.3(1) \text{ Å}^3$	
Ζ	1	
Density (calculated)	1.468 Mg/m^3	
Absorption coefficient	1.042 mm^{-1}	
<i>F</i> (000)	668	
Crystal size	$0.28\times0.28\times0.18~mm^3$	
Theta range for data collection	4.08 to 27.46°	
Index ranges	-17<=h<=17, -17<=k<=	=17, -9<=l<=11
Reflections collected	6458	
Independent reflections	1225 [<i>R</i> (int) = 0.0641]	
Completeness to theta = 27.46°	98.9 %	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	0.8417 and 0.7255	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	1225 / 0 / 70	
Goodness-of-fit on F^2	1.127	
Final R indices $[I > 2 \text{sigma}(I)]$	R1 = 0.0472, wR2 = 0.15	502
<i>R</i> indices (all data)	R1 = 0.0570, wR2 = 0.1580	
Extinction coefficient	0.029(8)	
Largest diff. peak and hole	$0.780 \text{ and } -0.518 \text{ e.}\text{\AA}^{-3}$	

化二十一日的 一日 胆 医头缘 行 伤 开 而 月	表2.4	4 化合物 4	的晶	體數據和	*精算結果	1
---------------------------	------	---------	----	------	-------	---

Chemical formula	${[Cd_2(CA)_3(H_3O)_2(phz)_3] \cdot 2CH_3COCH_3 \cdot 2H_2O}_n$
Empirical formula	$C_{60}H_{46}Cl_6Cd_2N_6O_{18}$
Formula weight	1576.58
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Trigonal
Space group	<i>P</i> −3 1 <i>m</i>
Unit cell dimensions	$a = 14.359(2)$ Å $\alpha = 90^{\circ}$
	$b = 14.359(2) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 8.651(2) \text{ Å} \qquad \gamma = 120^{\circ}$
Volume	1544.7(4) Å ³
Ζ	1
Density (calculated)	1.695 Mg/m^3
Absorption coefficient	1.013 mm^{-1}
<i>F</i> (000)	706
Crystal size	$0.25\times0.15\times0.15~mm^3$
Theta range for data collection	4.34 to 27.46°
Index ranges	-18<=h<=18, -15<=k<=15, -11<=l<=1
Reflections collected	3839
Independent reflections	1259 [R(int) = 0.0324]
Completeness to theta $= 27.46$	98.7 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1259 / 0 / 70
Goodness-of-fit on F^2	1.137
Final R indices $[I > 2 \operatorname{sigma}(I)]$	R1 = 0.0477, wR2 = 0.1512
R indices (all data)	R1 = 0.0582, wR2 = 0.1602
Extinction coefficient	0.019(5)
Largest diff. peak and hole	1.526 and -0.445 e.Å ⁻³

表2.5 化合物 5 的晶	1體數據和精算結果
---------------	-----------

Chemical formula	${[Zn_2(CA)_3(H_3O)_2(phz)_3] \cdot 2CH_3COCH_3 \cdot 2H_2O}_n$
Empirical formula	$C_{60}H_{46}Cl_6Zn_2N_6O_{18}$
Formula weight	1482.53
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Trigonal
Space group	P -3 1 m
Unit cell dimensions	$a = 13.7520(6)$ Å $\alpha = 90^{\circ}$
	$b = 13.7520(6)$ Å $\beta = 90^{\circ}$
	$c = 9.1950(5) \text{ Å}$ $\gamma = 120^{\circ}$
Volume	1506.0(1) Å ³
Ζ	1
Density (calculated)	1.635 Mg/m^3
Absorption coefficient	1.129 mm^{-1}
<i>F</i> (000)	670
Crystal size	$0.10\times0.05\times0.05~mm^3$
Theta range for data collection	4.08 to 27.47°
Index ranges	-17<=h<=17, -14<=k<=14, -11<=l<=11
Reflections collected	4026
Independent reflections	1234 [R(int) = 0.0416]
Completeness to theta = 27.47°	99.4 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1234 / 0 / 70
Goodness-of-fit on F^2	1.195
Final <i>R</i> indices $[I > 2 \operatorname{sigma}(I)]$	R1 = 0.0598, wR2 = 0.1862
<i>R</i> indices (all data)	R1 = 0.0731, wR2 = 0.1973
Extinction coefficient	0.038(8)
Largest diff. peak and hole	$1.202 \text{ and } -0.375 \text{ e.}\text{\AA}^{-3}$

Chemical formula	$\{ [Co_2(CA)_3(H_3O)_2(phz)_3] \cdot 2CH_3COCH_3 \cdot COCH_3 \cdot $	$2H_2O_n$
Empirical formula	$C_{60}H_{46}Cl_6Co_2N_6O_{18}$	
Formula weight	1469.62	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Trigonal	
Space group	<i>P</i> -3 1 <i>m</i>	
Unit cell dimensions	$a = 13.7930(8) \text{ Å}$ α	= 90°
	$b = 13.7930(8) \text{ Å} $ β	= 90°
	$c = 9.1310(7) \text{ Å}$ γ	= 120°
Volume	1504.4(2) Å ³	
Ζ	1	
Density (calculated)	1.723 Mg/m ³	
Absorption coefficient	0.884 mm^{-1}	
<i>F</i> (000)	664	
Crystal size	$0.05\times0.03\times0.03~mm^3$	
Theta range for data collection	6.83 to 27.47°	
Index ranges	-17<=h<=17, -14<=k<=1	4, -11<=l<=10
Reflections collected	3835	
Independent reflections	1211 [R(int) = 0.1051]	
Completeness to theta $= 27.47$	97.7 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares o	$n F^2$
Data / restraints / parameters	1211 / 0 / 70	
Goodness-of-fit on F^2	1.021	
Final <i>R</i> indices $[I > 2 \operatorname{sigma}(I)]$	R1 = 0.0669, wR2 = 0.1633	5
<i>R</i> indices (all data)	$R1 = 0.1158, wR2 = 0.190^{\circ}$	7
Extinction coefficient	0.012(5)	
Largest diff. peak and hole	$0.741 \text{ and } -1.067 \text{ e.}\text{\AA}^{-3}$	

Chemical formula	${[Cd_3(CA)_3(dptz)_2(H_2O)_2] \cdot 2THF \cdot 7H_2O}_n$		
Empirical formula	$C_{50}H_{52}Cd_3Cl_6N_{12}O_{23}$	$C_{50}H_{52}Cd_3Cl_6N_{12}O_{23}$	
Formula weight	1738.94	1738.94	
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 32.5331(4) Å	$\alpha = 90^{\circ}$	
	b = 10.3363(1) Å	$\beta = 96.431(1)^{\circ}$	
	c = 21.6692(3) Å	$\gamma = 90^{\circ}$	
Volume	7240.9(2) Å ³		
Ζ	4		
Density (calculated)	1.595 Mg/m^3		
Absorption coefficient	1.171 mm^{-1}	1.171 mm^{-1}	
<i>F</i> (000)	3464		
Crystal size	$0.2 \times 0.1 \times 0.08 \text{ mm}^3$		
Theta range for data collection	4.09 to 25.03°		
Index ranges	-38<=h<=38, -11<=	-38<=h<=38, -11<=k<=12, -25<=l<=23	
Reflections collected	18278	18278	
Independent reflections	6355 [<i>R</i> (int) = 0.0521	6355 [R(int) = 0.0521]	
Completeness to theta = 25.03°	99.0 %	99.0 %	
Absorption correction	Semi-empirical from	Semi-empirical from equivalents	
Max. and min. transmission	0.723 and 0.646	0.723 and 0.646	
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	6355 / 0 / 390	6355 / 0 / 390	
Goodness-of-fit on F^2	1.052		
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]$	R1 = 0.0500, wR2 = 0	R1 = 0.0500, wR2 = 0.1457	
<i>R</i> indices (all data)	R1 = 0.0827, wR2 = 0	R1 = 0.0827, wR2 = 0.1578	
Largest diff. peak and hole	0.757 and -0.657 e.Å	$0.757 \text{ and } -0.657 \text{ e.}\text{\AA}^{-3}$	

Chemical formula	{[Cu ₂ (CA) ₂ (2,2'-bpy	${[Cu_2(CA)_2(2,2'-bpym)]\cdot 2DMF}_n$	
Empirical formula	$C_{26}H_{20}Cl_4Cu_2N_6O_{10}\\$	$C_{26}H_{20}Cl_4Cu_2N_6O_{10}$	
Formula weight	845.36	845.36	
Temperature	293(2) K	293(2) K	
Wavelength	0.71073 Å		
Crystal system	triclinic		
Space group	P -1		
Unit cell dimensions	a = 8.6160(7) Å	$\alpha = 88.919(5)^{\circ}$	
	b = 9.2600(8) Å	$\beta = 77.433(6)^{\circ}$	
	c = 10.1900(7) Å	$\gamma = 81.812(3)^{\circ}$	
Volume	785.4(1) Å ³		
Ζ	1		
Density (calculated)	1.787 Mg/m^3	1.787 Mg/m^3	
Absorption coefficient	1.760 mm^{-1}	1.760 mm^{-1}	
<i>F</i> (000)	424	424	
Crystal size	$0.10\times0.15\times0.18~mm^3$		
Theta range for data collection	4.29 to 27.12°		
Index ranges	-8<=h<=11, −11<=h	-8<=h<=11, -11<=k<=11, -13<=l<=13	
Reflections collected	4660	4660	
Independent reflections	3229 [<i>R</i> (int) = 0.034	3229 [R(int) = 0.0341]	
Completeness to theta = 27.12°	93.3 %	93.3 %	
Absorption correction	None	None	
Refinement method	Full-matrix least-squ	Full-matrix least-squares on F^2	
Data / restraints / parameters	3229 / 0 / 203	3229 / 0 / 203	
Goodness-of-fit on F^2	1.074	1.074	
Final <i>R</i> indices $[I > 2 \operatorname{sigma}(I)]$	R1 = 0.0526, wR2 =	R1 = 0.0526, wR2 = 0.1336	
<i>R</i> indices (all data)	R1 = 0.0733, wR2 =	R1 = 0.0733, wR2 = 0.1512	
Extinction coefficient	0.016(6)	0.016(6)	
Largest diff. peak and hole	0.629 and -0.479 e.A	$0.629 \text{ and } -0.479 \text{ e.} \text{Å}^{-3}$	

Chemical formula	$\{[Cd_6(CA)_9]$	$(H-1,3-bpp)_4 \cdot (H_3O)_2 \cdot (H_2O)_2 \cdot (H_2$	$O_{8} \cdot (CH_{3}CN)_{4}_{n}$
Empirical formula		C ₁₁₂ H ₉₀ Cd ₆ Cl ₁₈ N ₈ O ₄₆	
Formula weight		3242.03	
Temperature		297(2) K	
Wavelength		0.71073 Å	
Crystal system		Monoclinic	
Space group		<i>C</i> 2/ <i>m</i>	
Unit cell dimensions		a = 15.0190(6) Å	$\alpha = 90^{\circ}$
		b = 23.917(1) Å	$\beta = 91.054(2)^{\circ}$
		c = 22.782(1) Å	$\gamma = 90^{\circ}$
Volume		8182.1(6) Å ³	
Ζ		2	
Density (calculated)		1.467 Mg/m^3	
Absorption coefficient		1.132 mm^{-1}	
<i>F</i> (000)		4904	
Crystal size		$0.25\times0.20\times0.20~mm^3$	
Theta range for data collection	1	4.15 to 24.12°	
Index ranges		-17<=h<=17, -25<=k<=	=27, -26<=l<=26
Reflections collected		11051	
Independent reflections		6501 [<i>R</i> (int) = 0.0308]	
Completeness to theta = 24.12	0	97.1 %	
Absorption correction		None	
Refinement method		Full-matrix least-squares on F^2	
Data / restraints / parameters		6501 / 0 / 427	
Goodness-of-fit on F^2		1.213	
Final R indices $[I > 2 \operatorname{sigma}(I)]$		R1 = 0.1196, wR2 = 0.25	535
R indices (all data)		R1 = 0.1350, wR2 = 0.2602	
Extinction coefficient		0.00037(10)	
Largest diff. peak and hole		$1.258 \text{ and } -1.761 \text{ e.}\text{\AA}^{-3}$	

表2.9 化合物 9 的晶體數據和精算結果

Chemical formula	${[Cd(CA)_2]\cdot 2NH_2(CH_3)_2}_n$	
Empirical formula	$C_{16}H_{16}CdCl_4N_2O_8$	
Formula weight	618.51	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Tetragonal	
Space group	$I4_{1}/a$	
Unit cell dimensions	a = 8.7130(3) Å	$\alpha = 90^{\circ}$
	b = 8.7130(3) Å	$\beta = 90^{\circ}$
	c = 28.622(1) Å	$\gamma = 90^{\circ}$
Volume	2172.9(1) Å ³	
Ζ	4	
Density (calculated)	1.891 Mg/m ³	
Absorption coefficient	1.544 mm^{-1}	
<i>F</i> (000)	1224	
Crystal size	$0.4 \times 0.2 \times 0.2 \text{ mm}^3$	
Theta range for data collection	4.26 to 27.48°	
Index ranges	-11<=h<=11, -7<=k<=8, -37<=l<=33	
Reflections collected	2356	
Independent reflections	1245 [R(int) = 0.0218]	
Completeness to theta = 27.48°	99.4 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	1245 / 0 / 88	
Goodness-of-fit on F^2	1.089	
Final R indices $[I > 2 \text{sigma}(I)]$	R1 = 0.0256, wR2 = 0.0567	
<i>R</i> indices (all data)	R1 = 0.0289, wR2 = 0.0588	
Extinction coefficient	0.0027(4)	
Largest diff. peak and hole	$0.480 \text{ and } -0.406 \text{ e.}\text{Å}^{-3}$	

Chemical formula	[Cd ₄ Cl ₄ (pcaph) ₄]·4H ₂	[Cd ₄ Cl ₄ (pcaph) ₄]·4H ₂ O	
Empirical formula	$C_{48}H_{44}Cd_4Cl_4N_{16}O_8$	$C_{48}H_{44}Cd_4Cl_4N_{16}O_8$	
Formula weight	1564.38	1564.38	
Temperature	293(2) K	293(2) K	
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 11.7707(2) Å	$\alpha = 99.621(1)^{\circ}$	
	<i>b</i> = 12.6731(2) Å	$\beta = 108.631(1)^{\circ}$	
	c = 13.3953(2) Å	$\gamma = 109.988(1)^{\circ}$	
Volume	1691.58(5) Å ³		
Ζ	1		
Density (calculated)	1.534 Mg/m^3	1.534 Mg/m ³	
Absorption coefficient	1.453 mm^{-1}	1.453 mm^{-1}	
<i>F</i> (000)	768	768	
Crystal size	$0.25\times0.10\times0.10~m$	$0.25\times0.10\times0.10\ mm^3$	
Theta range for data collection	4.07 to 27.45°	4.07 to 27.45°	
Index ranges	−14<=h<=15, −16<=	-14<=h<=15, -16<=k<=15, -17<=l<=17	
Reflections collected	17266	17266	
Independent reflections	7676 [$R(int) = 0.0670$	7676 [$R(int) = 0.0670$]	
Completeness to theta = 27.45°	99.3 %		
Absorption correction	Semi-empirical from	Semi-empirical from equivalents	
Max. and min. transmission	0.8526 and 0.7784	0.8526 and 0.7784	
Refinement method	Full-matrix least-squ	Full-matrix least-squares on F^2	
Data / restraints / parameters	7676 / 0 / 364	7676 / 0 / 364	
Goodness-of-fit on F^2	1.052	1.052	
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]$	R1 = 0.0748, wR2 = 0	R1 = 0.0748, wR2 = 0.2229	
<i>R</i> indices (all data)	R1 = 0.1253, wR2 = 0	R1 = 0.1253, wR2 = 0.2405	
Extinction coefficient	0.0035(9)	0.0035(9)	
Largest diff. peak and hole	1.472 and -0.835 e.Å	1.472 and $-0.835 \text{ e.}\text{Å}^{-3}$	

