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BBAACCKKGGRROOUUNNDD    

 

The Department of  Science Education (DSE), National Science Council of  Taiwan, has recently 

urged research of  interdisciplinary studies in science and mathematics education. The purpose 

of  this proposed conference is to invite individuals from different background including science 

and mathematics education, cognitive science, psychology and/or learning sciences for 

developing a framework aiming at conducting future interdisciplinary studies. The conference is 

designed to address important issues and key challenges and provide directions and conceptual 

framework for conducting interdisciplinary research in science and mathematics education. 

 

背背景景  

 

行政院國家科學委員會科學教育發展處，近期推動跨領域之數理教育研究。此研討會的

目的在於邀請來自不同背景的學者，其中包含數學或科學教育、認知科學、心理及學習

科學，以發展未來跨領域之研究架構。此研討會旨在深入討論重要及關鍵的研究問題，

為未來跨領域之數理教育研究提供探討方向及概念架構。 
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PPRROOGGRRAAMM  

 
 May 25, 2006 (Thursday) 

 

08:00 - 08:30 Reception 

Opening Ceremony 

08:30 - 08:40 
Tung-Yi (Tony) Lee, Dean of The Office of Research & Development, NTNU 

Keynote Speech I: Cognitive Research 

Science learning and teaching for the 21st century: Impacting students' 

learning & teachers' assessment and pedagogical practices 08:40 - 10:10 

Speaker: Janice Gobert 

Chair: Chun-Yen Chang, Dept. of Earth Sciences, NTNU 

10:10 - 10:30 Refreshment 

Keynote Speech II: Learning Sciences 

Beyond Compartmentalized Curricula in Science and Mathematics: 

Implications of Complex Systems for the Learning Sciences and for 

Education 
10:30 - 12:00 

Speaker: Michael J. Jacobson 

Chair: Chin-Chung Tsai, Institute of Education, National Chiao Tung University 

12:00 - 14:00 Lunch 

14:00 - 17:00 Workshop 
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PPRROOGGRRAAMM  

 
 May 26, 2006 (Friday) 

 

08:00 - 08:30 Reception 

Keynote Speech III: Epistemology 

Understanding students' epistemic beliefs in science and mathematics: An 

overview of constructs, measures, and research 08:30 - 10:00 

Speaker: Barbara K. Hofer 

Chair: Fang-Ying Yang, Dept. of Earth Sciences, NTNU 

10:00 - 10:30 Refreshment 

Keynote Speech IV: Neurocognitive research 

The neural mechanisms of visual/spatial imagery and their implications for 

science education 
10:30 - 12:00 

Speaker: Maria Kozhevnikov 

Chair: Chia-Ju Liu, Graduate Institute of Science Education, National Kaohsiung 

Normal University 

12:00 - 13:30 Lunch 

Keynote Speech V: Science Teacher Education 

Developing a Science Teacher Professional Development Research 

Agenda 13:30 - 14:30 

Speaker: James P. Barufaldi 

Chair: Chun-Yen Chang, Dept. of Earth Sciences, NTNU 

14:30 - 15:00 Refreshment 

15:00 - 17:00 Workshop 
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KKEEYYNNOOTTEE  SSPPEEEECCHH  II  ––  AABBSSTTRRAACCTT  //  PPAAPPEERR    

The text of  the abstract/paper has been printed as received; no editing has been done. 
 
 

Science learning and teaching for the 21st century: Impacting students’ 
learning & teachers’ assessment and pedagogical practices 

Janice D. Gobert 
 

The Concord Consortium 

25 Love Lane, Concord, MA 01742 

jgobert@concord.org 

 
Introduction 

The book Science for All Americans  (Rutherford & Alhlgren, 1990) is party responsible 
for changing the way we think about who gets educated in science. Post the Sputnik era, we are 
no longer interested in science for only the “best and the brightest” students. We need a broad 
base of  citizens who are scientifically literate so they can make decisions that affect their 
everyday lives, i.e., (e.g., radon testing in their homes, etc.).  Being scientifically literate includes 
various forms of  knowledge (Perkins, 1986), including: Content knowledge, to us, this 
knowledge is in the form of  models, Process skills, i.e., inquiry, evaluation of  evidence, 
communication, etc., to this we add modeling skills, Understanding the nature of  science, i.e., 
that it is a dynamic discipline, and to this we add understanding the nature of  models (Gobert & 
Discenna, 1996; Schwarz & White, 1998). 
 Information technologies provide a promising path to scientific literacy: 1) Computers are 
becoming more ubiquitous, thus, problems of  access are lessening; 2) computers are a powerful 
computation medium which can run complex simulations beyond textbook diagrams, 3) the 
world wide web allows students access to authentic, real-time data and visualizations, and 4) 
learning environments and technology infrastructures are becoming widely available to support 
students in their science inquiry, support teachers in assessment, and support researchers in data 
analysis and, in turn, theory development. Furthermore, information technologies are making 
major contributions to Cognitive Science, to Intelligent Tutoring Systems, and to Science 
education in terms of  reform efforts in many ways. In this paper we specifically address the 
affordances of  learning environments, which log students’ actions while they are learning. 
Logging has important implications, as follows:  1) For Cognitive Science because logging 
provides a bird’s eye view into the “black box” regarding students’ learning processes with 
greater validity than previous measures (Ericsson & Simon, 1984); 2) For Intelligent tutoring 
systems because it is an essential component of  intelligent tutoring systems which can fade 
scaffolding as a student’s skill level increases (Dede & Lewis, 1995), and 3) For Science 
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Education because log files provide formative assessment data for teachers to make curricular 
decisions in real time as well as for curriculum designers generally. 
 
The Modeling Across the Curriculum project (mac.concord.org; IERI # 0115699). 
 The Modeling Across the Curriculum project is a scalability project for which we have 
developed a technology platform, a reporting system, and curricular materials. There are four 
levels of  research being conducted. Level 1 focused on improving the scaffolding design through 
individual interviews of  students and teachers. Level 2 focused on classroom-based studies to 
evaluate the impact of  amount of  scaffolding. Level 3 is a longitudinal study of  our dependent 
variables (content, inquiry skills, attitudes towards science, and epistemology of  models) with the 
same students across 3 years in all three domains in our partner schools. Level 4 addresses what 
supports are necessary to scale this to many more schools.  
 Our curricular activities present students with content using a progressive model-building 
approach (White & Frederiksen, 1990; Raghavan & Glaser, 1995; Gobert & Clement, 1999) in 
which simpler models (e.g., static representations of  structural information) provide conceptual 
leverage for more complex models (e.g., causal models) of  scientific phenomena.  These, in 
turn, support model-based reasoning. We support students’ model-based reasoning using 
scaffolds designed by our group (Gobert & Buckley, 2003) and in accordance with model-based 
learning theory (Gobert & Buckley, 2000); in doing so, we also draw on literature on students’ 
difficulties in learning with models (Lowe, 1989).  
 The inquiry skills in national standards (NSES, 1996; U.S. Dept of  Education, 1993) match 
pedagogically with model-based teaching and learning, the theoretical framework underlying our 
research, learning activities, and assessment (Gobert & Buckley, 2000). The tenets of  
model-based learning are based on the presupposition that understanding requires the 
construction of  mental models, and that all subsequent problem-solving or reasoning are done 
by means of  manipulating or ‘running’ these mental models (Johnson-Laird, 1983). Model-based 
reasoning also involves the testing, and subsequent reinforcement, revision, or rejection of  
mental models (Buckley & Boulter, 2000). This represents authentic science thinking in that it is 
analogous to hypothesis development and testing among scientists (Clement, 1989). The 
reasoning processes of  hypothesis generation from the model, testing that hypothesis, and 
interpreting the data are among the higher order inquiry skills that are difficult to teach and are 
the type of  reasoning needed in inquiry (Raghavan et al, 1995; Penner et al, 1997; White et al, 
2002; Gobert, 2000). 
 
Measuring Inquiry in situ 

 Inquiry is critical to science reform efforts as acknowledged by national standards (NSES, 
1996; U.S. Dept of  Education, 1993) but research on inquiry skills has been hampered by the 
difficulty and complexity of  measuring inquiry, in particular, separating inquiry from its context. 
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Since inquiry skills are developed in rich scientific contexts, their assessment needs to be 
conducted within the scientific domains and contexts in which they are embedded (Mislevy et al., 
2002). In the past, two approaches to measuring inquiry have been used: short answer tests of  
specific skills, and hands-on performance assessments. The former can be incorporated into 
large-scale standardized assessments but have been criticized because it is unclear whether 
decontextualized knowledge of  the various skills that make up inquiry are sufficient to allow 
students to undertake inquiry (Pellegrino, 2001). The second option, performance assessment, 
appears to be more authentic because it requires a greater integration of  specific skills to solve 
real problems (Ruiz-Primo & Shavelson, 1996) however, these are seldom used in schools, due 
largely to the difficulty of  administering reliable assessments and the resulting high cost.  

Our project uses a different approach that offers both the validity of  performance tests and 
the simplicity demanded by large-scale assessments: that is, computer-based assessments of  
inquiry that are embedded in instructional activities. Using our scripted models which are based 
on scientific laws, the learner can ask a question of  such a model, develop a plan of  action for 
using the model to answer the question, run an experiment to test the model, collect the data, 
analyze the data, and communicate findings to other users.  

Our technology has the following components. Content Engines (BioLogica, Dynamica, 

Chemica, & Connected Chemistry)-- These are implemented in Java, using model, view, 
controller architecture. They are Event-driven via action listeners. Actions may be initiated by 
user, via UI, or by model, via state change events. Script Layer--Our authoring environment 
uses node-and-arc representation of  script structure. Nodes contain executable code and screen 
layout specification. Arcs implement flow control and node initialization and cleanup functions. 
State saving is achieved by designating alternative start nodes. Pedagogica™-- Links scripts to 
engines at runtime, using Java’s introspection capability. These include generic objects such as 
questions, graphs, etc. They implement logging functions, including encryption and backup of  
log files. CC Portal-- Implements web-based school-topic-teacher-class-student registration 
process. It parses XML in student log files and populates MySQL database. It archives and 
maintains all data and provides browser-based online access to reports for administrators, 
teachers, and students. Data mining tools-- Produce customized reports for researchers. The 
output is exported to third-party statistics programs. 

The advantages of  using such a system to conduct empirically rigorous research on learning 
and assessment of  inquiry skills are many, as follows. Data collection. Because all activities are 
on-computer, we can effortlessly and accurately monitor and record every user response and 
action. Control. Because we have complete control over the learning environment, we can 
simplify it to make the content more accessible and the experiments easier to perform than real 
systems. This can save time and increase the complexity of  the science concepts studied. 
Reproducibility. All aspects of  the assessment can be exactly reproduced—the experiment, the 
scaffolding, and the hints. Furthermore, there are no uncontrolled clues for the user, such as the 
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tone of  a human response or non-verbal clues. Integration with instruction. The same model 
and technical environment used for learning activities can be used for assessment. The 
assessment can be part of  instruction, so that additional class time is not required; assessment is 
“seamless”. Convenience. No equipment other than a computer is needed and no local 
training is needed for reliable results.  Scalability. Because only a networked computer is 
needed, we can conduct this research anywhere and the resulting assessment tools can be used 
worldwide. 
 
Inquiry Hot Spots 

 As previously stated, our computer models are hypermodels (Horwitz & Christie, 1999) 
which are scripted using Pedagogica ™ (Horwitz & Burke, 2002), a technological infrastructure 
that logs all students’ interactions with our models and responds to learners based on their input. 
We log all students’ interactions with models and use data from inquiry “hot spots”, i.e., tasks 
that require deep reasoning and contain multiple components of  model-based inquiry 
(representation, acquisition, integration, reasoning, and reflection) to characterize students’ 
inquiry strategies on that task. We use students’ log files on multiple inquiry hot spots across 
three domains to address how students’ inquiry skills are developing both within and across 
domains. One measure of  students’ inquiry skills is how systematic students are in manipulating 
models to achieve a goal. Systematicity has been found to be a reliable measure of  students’ 
strategic learning and knowledge acquisition strategies (Gobert, 1994; Thorndyke & Stasz, 1980) 
and is a good measure with which to compare learners since it bears on their skill at estimating 
solutions (Paige & Simon, 1966). As we proceed with the project we will use students’ data on 
inquiry hot spots and evaluate their relationship to both conceptual learning measurements, i.e., 
pre-post content tests and to measures of  students’ epistemologies of  models and views of  
science since students’ epistemologies of  models have been found to influence science learning 
(Gobert & Discenna, 1997), thus, it is possible that students’ epistemologies influence the 
manner in which students strategically manipulate models as well. 

In this talk, I will describe logging and assessment tools developed by our group.  Some of  
our current work on performance assessment of  students’ inquiry skills in different disciplines 
will be presented, namely Newtonian Mechanics, Genetics, and Gas Laws. Additionally, I will 
show, using logs, the relationship between students’ specific inquiry strategies and their resulting 
conceptual understanding as measured by our conceptual post-tests. 
 
References 

Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of  representations and expressed  
models in building mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing 
models in science education (pp. 105-122). Dordrecht, Holland: Kluwer. 

Clement, J. (1989). Learning via model construction and criticism: Protocol evidence on sources  



BRAIN 
 

9

of  creativity in science. In J. A. Glover, R. R. Ronning & C. R. Reynolds (Eds.), Handbook 
of  creativity: Assessment, theory and research (pp. 341-381). New York: Plenum Press. 

Dede, C., & Lewis, M. (1995). Assessment of  emerging educational technologies that might assist  
and enhance school-to-work transitions. Washington, DC: National Technical Information 
Service. 

Ericsson, K.A., and Simon, H.  (1984).  Protocol Analysis:  Verbal reports as data.   
Cambridge, MA:  Bradford Books, MIT Press. 

Gobert, J. (1994). Expertise in the comprehension of  architectural plans:  Contribution of   
representation and domain knowledge. Unpublished doctoral dissertation. University of  
Toronto, Toronto, Ontario. 

Gobert, J. (2000). A typology of  models for plate tectonics:  Inferential power and barriers to  
understanding. International Journal of  Science Education, 22(9), 937-977. 

Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in  
science education. International Journal of  Science Education, 22(9), 891-894.57. 

Gobert, J., & Buckley, B. C. (2003). Scaffolding model-based reasoning: Representations and  
cognitive affordances. Concord, MA: The Concord Consortium. 

Gobert, J. D., & Clement, J. J. (1999). Effects of  student-generated diagrams versus  
student-generated summaries on conceptual understanding of  causal and dynamic 
knowledge in plate tectonics. Journal of  Research in Science Teaching, 36(1), 39-53. 

Gobert, J., & Discenna, J. (1997). The relationship between students' epistemologies and  
model-based reasoning. Paper presented at the American Educational Research Association, 
Chicago. 

Horwitz, P., & Burke, E. J. (2002). Technological advances in the development of  the  
hypermodel. Paper presented at the American Educational Research Association, New 
Orleans. 

Horwitz, P., & Christie, M. (1999). Hypermodels: Embedding curriculum and assessment in  
computer-based manipulatives. Journal of  Education, 181(2), 1-23. 

Johnson-Laird, P. N. (1983). Mental Models. Cambridge, MA: Harvard University Press. 
Lowe, R.  (1989).  Scientific diagrams:  how well can students read them?  Key Centre for  

School Science and Mathematics, curtain university of  Technology, Perth, Australia. 
Mislevy, R. J., Chudowsky, N., Draney, K., Fried, R., Gaffney, T., Haertel, G., et al. (2002). Design  

patterns for assessing science inquiry. Unpublished manuscript, Washington, DC. 
National Research Council (US). (1996). National Science Education Standards. Washington,  

DC: National Academy Press. 
Paige, J.M., and Simon, H. (1966). Cognitive processes in solving algebra word problems. In B.  

Kleinmuntz (Ed.), Problem solving. New York: Wiley.  
Pellegrino, J. W. (2001). Rethinking and redesigning educational assessment: Preschool through  

postsecondary. Denver CO: Education Commission of  the States. 



BRAIN 
 

10

Penner, D. E., Giles, N. D., Lehrer, R., & Schauble, L. (1997). Building functional models:   
designing an elbow. Journal of  Research in Science Teaching, 34(2), 125-143. 

Perkins, D. N. (1986). Knowledge as Design. Hillsdale, NJ: Lawrence Erlbaum Associates.  
Raghavan, K., & Glaser, R. (1995). Model-based Analysis and Reasoning in Science: The MARS  

Curriculum. Science Education, 79(1), 37-61. 
Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Rhetoric and reality in science performance  

assessments: An update. Journal of  Research in Science Teaching, 33(10), 1045-1063. 
Rutherford, J.,  & Ahlgren, A. (1990).  Science for All Americans.  Oxford University Press,  

New York, NY. 
Schwarz, C. & White, B. (1999). What do seventh grade students understand about scientific  

modeling from a model-oriented physics curriculum?  Presented at the National 
Association for Research in Science Teaching, March 28 - 31, Boston, MA. 

Thorndyke, P., & Stasz, C. (1980). Individual differences in procedures for knowledge acquisition  
from maps. Cognitive Psychology, 12, 137-175. 

U.S. Department of  Education (1993). Using Technology to Support Education Reform,  
Chapter III: Support for Student Learning Activities, 
www.ed.gov/pubs/EdReformStudies/TechReforms. 

White, B. Y., & Frederiksen, J. R. (1990). Causal Model Progressions as a Foundation for  
Intelligent Learning Environments. Artificial Intelligence, 42(1), 99-157. 

 
 



BRAIN 
 

11

KKEEYYNNOOTTEE  SSPPEEEECCHH  II  ––  PPOOWWEERRPPOOIINNTT  

The text of  the PowerPoint has been printed as received; no editing has been done. 
 
 

Science learning and teaching for the 21st century:  
Impacting students’ learning  & teachers’ assessment and 

pedagogical practices.

Janice D. Gobert
The Concord Consortium

mac.concord.org
www.concord.org

Funded by the National Science Foundation  and the U.S. Dept. of Education
(IERI #0115699).  All opinions expressed are those of the author and do not

necessarily reflect the views of the granting agencies.
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Overview
• Introduction:  Information Technology & its implications
• MAC summary &Theoretical framework
• Technological Infrastructure & engines
• Model-based reasoning & inquiry leaning with technology
• MAC Data collected (surveys, etc).
• Data:  content learning & inquiry skills~ example of hot 

spots
• Synergistic activities and future vision 
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KKEEYYNNOOTTEE  SSPPEEEECCHH  II  ––  PPOOWWEERRPPOOIINNTT  
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Information Technology & 
Scientific Literacy 

• The book Science for All Americans is party responsible for changing the 
way we think about WHO gets educated in science. 

• Post the Sputnik era, we are no longer interested in science for only the 
“best and the brightest students”, we need a broad base of citizens who are 
scientifically literate so they can make decisions that affect their everyday 
lives, i.e., (e.g., radon testing in their homes, etc.).

• Being scientifically literate includes various forms of knowledge (Perkins, 
1986):

⇒ Content knowledge; to us, this knowledge is in the form of models.
⇒ Process skills, i.e., inquiry, evaluation of evidence, communication, etc.; we add 

modeling skills). 
⇒ Understanding the nature of science, i.e., that it is a dynamic discipline.
⇒ We add, understanding the nature of models (Gobert & Discenna, 1996; Schwarz & 

White, 1998).

 
 

Information Technology provides a 
promising path to scientific literacy…

• Computers are becoming more ubiquitous, thus problems of 
access are lessening. 

• Powerful computation medium--> can run complex simulations 
beyond textbook diagrams.

• WWW allows students access to authentic, real-time data and 
visualizations.

• Learning environments and technology infrastructures are 
becoming widely available to support students in their science 
inquiry…

 
 

Information Technology & 
Broader Implications

Information technologies are making major contributions to Cognitive Science, 
to Intelligent Tutoring Systems, and to Science education in terms of reform 
efforts in many ways.

Here we specifically address the affordances of learning environments which 
log students’ actions while they are learning.

Logging has important implications for: 1) Cognitive Science, 2) Intelligent 
Tutoring Systems, and 3) Science Education…
1) provides a bird’s eye view into the “black box” regarding students’ learning 
processes with greater validity than previous measures (Ericsson & Simon, 1980).  
2) is an essential component of intelligent tutoring systems which can fade 
scaffolding as a student’s skill level increases (Dede & Lewis, 1995). 
3) is critical for formative assessments for teachers to make curricular decisions in 
real time as well as for curriculum designers generally.
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Modeling Across the Curriculum 
Project Summary

As part of a scalability effort funded by the Inter-Agency 
Education Research Initiative (IERI), we have developed 
qualitative model-based tools for inquiry as a means to 
promote scientific literacy on a broad scale.

We postulate that this promotes model-based learning in 
students.  Model-based knowledge is more generative, 
transferable, and can be applied to everyday life (e.g., 
radon testing in our homes, etc.).  

Currently, we have 13 Member schools and 400+ contributing 
schools.

 
 

MAC Research Overview

Four types of studies/questions originally proposed

• individual interviews of students and teachers to formalize scaffolding 
and surveys. 

• classroom-based studies to evaluate the impact of amount of 
scaffolding.  

• a longitudinal study of our dependent variables in a 3-year 
implementation of materials.

• how can this technology be scaled to include many more schools?

 
 

Instructional Design of Activities and 
Scaffolding are based on…

Model-based learning (Gobert & Buckley, 2000) as well as other 
literature….

• cognitive and perceptual affordances of learning with technology-based representations (Gobert, 
2005; Larkin & Simon, 1987)

• progressive model-building (White & Frederiksen, 1990; Raghavan & Glaser, 1995)

• students’ difficulties in learning with models (Sweller, et al, 1990; Gobert, 1994; Lowe, 1989; Head, 
1984).

Thus, scaffolding is designed to…

• guide search, supports perceptual cues, and inference-making from perceptual cues (Larkin & Simon, 1987).  

• elicit  prior knowledge, support  integration with new knowledge, and support reflection & reification of 
knowledge.
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What is Model-based reasoning?

• Modeling research at the Concord Consortium organizes 
learning activities, assessment, and research around 
model-based learning (Buckley, 2000; Gobert & Buckley, 
2000), a theory of science learning that integrates basic 
research in cognitive psychology and science education.

• Its tenets are that understanding requires the construction 
of mental models and all subsequent problem-solving, 
inferencing, or reasoning are done by means of 
manipulating or ‘running’ these mental models (Johnson-
Laird, 1983).

• Model-based reasoning also involves the testing, and 
subsequent reinforcement, revision, or rejection of mental 
models.

 
 

Model-Based Learning in situ

Intrinsic Learner 
Factors

Epistemology of models
(SUMS, Treagust et al, 2002)

Attitudes & Self-efficacy
(VASS, Halloun, 2001)

Intrinsic Teacher 
Factors

Epistemology of models
(adapted from 

Grosslight et al, 1991)

Teaching experience
Background

(adapted from Fishman, 
1999)

Classroom Factors
Implementation of MAC activity use

(logged)
Teacher practices

(reported via Classroom Communique)

Hypermodels*
simulations
diagrams

explanations
instructions
data tables

graphs

model reinforcement
model revision
model rejection

Learner's
Mental
Models

model evaluation

prior knowledge new information

model formation
Interacting with

understanding
reasoning
generating

Phenomena
experiences
experiments

model use

 + Metacognitive
Selecting
Directing 
Monitoring

 
 

Model-based Inquiry a la MAC

MAC supports 5 strands of model-based inquiry. These are more specific than the 
NSES (1996) inquiry standards which were are not specific to current technology-
based learning.

• Representational  Competence: view and understand a representation or features of the domain. 
• Model pieces acquisition:  understand & reason with  pieces of models (spatial, causal, functional, 

temporal).
• Model pieces integration:  combine model components in order to come to a deeper understanding of 

how they work together as a causal system.  
• Model based reasoning: reasoning with models or pieces of models.  
• Reconstruct, Reify, & Reflect:  reify knowledge and transfer it to another context or level of 

understanding.
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Model-based learning, inquiry, 
assessment & technology!

• Currently reform efforts call for the development of inquiry skills by 
learners.

• However, there lacks efficient, reliable means of assessing inquiry 
skills in part because it is difficult to separate inquiry skills from the 
context in which they were developed (Mislevy et al., 2002). 

• In MAC, our activities require deep, authentic model-based inquiry, are 
enacted over many days while seamlessly integrated with instruction, 
thus, we have an efficient, reliable way of assessing inquiry skills.

 
 

Types of Data Collected

• School demographics & available technology
• Teachers 

– Science Background 
– Modeling survey 

• (adapted from Gobert & Discenna, 1997)
– Classroom Communiqués regarding pedagogy used alongside software.

• Students
– SUMS (Student Understanding of Models Survey; Treagust et al, 2002, adapted 

from Grosslight et al, 1991)
– VASS (Views About Science Survey; Halloun and Hestenes, 1998)

• Comparable forms for biology, physics, and chemistry

– Content Pre and Post tests
– Log files from our curricular activities (includes embedded & performance 

assessments)~ in particular, HOT SPOTS

 
 

Technology Overview
Our Engine

• We use Pedagogica, a powerful runtime and authoring environment which~

has general purpose software tools, manipulable models, and assessments 
controls all aspects of the learners’ interactions with the tools 
provides formative and summative assessment (for teachers) and performance 

assessments (log data for researchers).

Content Models
Four content areas: 
• Genetics (BioLogica)
• Gas Laws (Connected Chemistry)
• Newtonian Mechanics (Dynamica)
• Atomic Structure (Chemica )

• Our models are hypermodels whereby interactive models are coupled with rich 
embedded assessments that students learn through exploration and scaffolded
inquiry; thus, assessment is seamlessly  integrated with instruction. Hypermodels
logs all actions, allowing performance-based assessment of students’ inquiry 
strategies and content learning.
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What’s under “the hood”? 

Pedagogica™
Links scripts to engines at runtime, using Java’s introspection capability
Includes generic objects such as questions, graphs
implements logging functions, including encryption and backup of log files

Content Engines
Implemented in Java, using Model, View,Controller architecture
Event-driven via action listeners
Actions may be initiated by user, via UI, or by model, via state change events

Script Layer
Authoring environment uses node-and-arc representation of script structure
Nodes contain executable code and screen layout specification
Arcs implement flow control and node initialization and cleanup functions
State saving achieved by designating alternative start nodes

CC Portal
Implements web-based school-topic-teacher-class-student registration process
Parses XML in student log files and populates MySQL database 

Archives and maintains all data
Provides browser-based online access to reports for administrators, teachers, and students

Data mining tools
Produce customized reports for researchers
Output can be exported to third-party statistics programs

 
 

MAC Enabling Architecture

Script Pedagogica™

Scripting editor

Student computers
MAC activities

Data

BioLogica
• Transmission genetics 
(Mendelian + molecular).
• Includes meiosis, mono-, 
dihybrid-, sex-linked & 
Polygeneic characteristics.

Dynamica
• Newtonian mechanics
• Covers: vectors, vector 
addition, force & mass, 
gravity, momentum, 
collisions, balancing 
forces.

Connected 
Chemistry

• Gas laws & kinetic
molecular theory.
• promotes micro- to macro 
Connections.

Chemica
• Atomic structure, fields 
& orbitals, types of bonds, 
states of matter, phase 
change, van der waals.

CC Portal

 
 

Data Flow

Log 
files

Server 
DatabaseLocal 

hard disk

encryption

Scoring 
& reporting 

programs

Student
Report

Data
Capture

Student ID Date

Total 
duration 
(min) TLRead TL3time TL3RdTsk T3trials T3success T3CAT

2306 Wed Jan 04 09:5 20.6 1.2 2.5 73 2 1 B1
2315 Wed Jan 04 13: 21.5 0.3 2.9 34 8 1 B2
2335 Wed Jan 04 14:0 17.1 0.2 2.7 130 1 1 A
2404 Wed Jan 04 10:0 16.3 0.2 2 13 10 1 B2
2467 Wed Jan 04 14:0 22.9 3.2 2.2 24 4 1 B2
2486 Wed Jan 04 13: 16.3 0.9 0.9 27 1 1 A
2532 Wed Jan 04 09:5 18.6 0 2.1 46 4 1 B2
2654 Wed Jan 04 14:0 17.9 0.2 1.8 18 7 1 B2
2655 Wed Jan 04 13: 18.6 1.3 2.3 27 5 1 C
2657 Wed Jan 04 14:0 16.6 0.8 3.6 61 4 1 B2
2666 Wed Jan 04 09: 13.7 0.7 0.9 15 2 1 B1
2701 Wed Jan 04 13: 12.2 0.1 1.2 10 4 1 B2
2703 Wed Jan 04 13: 13.4 1.4 1.5 47 3 1 B2
2743 Wed Jan 04 13: 20.7 0.4 3.1 35 9 1 B2
2748 Wed Jan 04 10:0 16.2 0.1 1.9 53 2 1 B1
2754 Wed Jan 04 10:0 25.5 0.3 2 41 1 0 F2

For teachers’ use
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Technology & Affordances for 
Research & Assessment

Technology:
Log files on students’ interactions with models 

capturing  students’…

– Data on duration and sequence 
– Actions and choices with models
– What info or help they seek
– Responses to questions

Embedded & Performance Assessments with 
models & questions…

– Generate profile for students at
“pivotal” points in curriculum
– Responses to questions

Affordances
Implementation data -- which activities were used, 

pattern of use (consecutive or intermittent days) 
at classroom level & student level.

Finer-grained log data can be used for
– Measure of students’ systematicity and 

inquiry skills.
– Test for interactions with prior knowledge 

& epistemology.

These data are  used to derive student reports….

¯ Formative assessments 
¯ Summative assessments
¯ Performance assessments

 
 

Inquiry “Hot Spots”

• Currently we are focusing on analyzing log file data from inquiry hot 
spots as indices of students’ model-based inquiry skills.

Hot spots are:
• Tasks or parts of tasks that contain multiple components of model-

based inquiry (representation, acquisition, integration, reasoning, and 
reconstruct, reify, and reflect).

• Tasks or parts of tasks that require deep reasoning.

Fine-grained analysis, one hot spot at a time, is necessary in order for 
us to code the various process variables we plan to aggregate and 
focus on.

With these data, we can assess transfer from one domain to another 
and assess how a student’s inquiry skills are progressing 
“independent” of content learning.

 
 

Analysis of hot spots (cont’d)

• Since our activities are enacted over multiple 
days and in three domains, we avoid the 
problems faced by earlier studies of inquiry in 
which there were not enough data to get at 
students’ inquiry skills (Shavelson et al, 1999). 

 

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________ 

 

 

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________ 

 

 

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________ 



BRAIN 
 

18

KKEEYYNNOOTTEE  SSPPEEEECCHH  II  ––  PPOOWWEERRPPOOIINNTT  

The text of  the PowerPoint has been printed as received; no editing has been done. 
 
 

Overview of Data Analysis of  Hot Spots

Tracking students’ systematicity in learning with models is one important facet of 
inquiry skills and conceptual learning.  To us, inquiry skills co-evolve with content 
learning but each can be measured separately (sort of).

Theory driving this is based on…
• expert problem-solving for estimating solutions (Paige & Simon, 1966)
• experts vs. novices search and knowledge acquisition strategies (Gobert, 1994, 1999; 

Thorndyke & Stasz,1980).

Relationship of log data to:
• conceptual learning measurements, i.e., pre-post content tests
• measures of students’ epistemologies of models and views of science since 

students’ epistemologies influence learning (Songer & Linn, 1991; Gobert & 
Discenna, 1997).

 
 

Steps for Analysis of 
Log Data

• Analysis protocols for log file were developed via a 
reiterative process of 
– validation of log files
– development of rubrics
– hand scoring
– computer scoring
– validation of scoring
– hand summarization
– computer processing
– validation of summary/concise reports
– statistical analyses:  relationship to content learning, and other 

dependent variables. 

 
 

Data to be presented

From Dynamica on inquiry hot spot 
coding and validation using Carnegie-
Mellon University production rules 
approach.

If there is time, data from BioLogica on 
inquiry hot spot coding and relationship 
to content learning and from Connected 
Chemistry on students’ strategies on hot 
spots. 
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Activities in Dynamica & hot spots 
presented here

• 9 activities
• Pre and post tests and surveys
• Here we focus on hot spots from Collisions and Momentum in 1D

 
 

Types of data Data logged for 
Hot Spots

Values entered for each trial
Number of  trials
Process variables
Success 

Simulation tasks

Value(s) 
(Auto Scored)

Numerical values
Arrows, sliders, boxes

Full text of responsesConstructed text responses

Students’ choices
(Auto Scored)

Multiple choice
Survey questions

DataItem format

 
 

Hot spot from Collisions task 5:  
Student sets mass of two balls

• The challenge: 
adjust the 
masses of the 
two balls to make 
the orange ball 
move as fast as 
possible after the 
collision.
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Strategies for Inquiry

Preliminary analysis based on human coding 
identified 2 different inquiry patterns:

1. haphazard
2. Systematic
(Also, there are students who got it correct on first trial, sometimes with 

explicit test).

These are consistent with literature: 
~ experts vs. novices search and knowledge acquisition strategies (Thorndyke & 

Stasz,1980; Gobert, 1994, 1999).

~ expert problem-solving for estimating solutions (Paige & Simon, 1966).

Examples …

 
 

Haphazard Strategy- this student obtained the 
correct answer (11.0; 1.0) on trials 2,10,(& 15) 

but did not know it!
Student 12116 

made 15 trials:
Blue Ball        Orange ball

11.0 11.0
11.0 1.0
11.0 3.0
11.0 4.0 
1.0 1.0 
1.0 11.0 
8.0 7.0 
11.0 2.0 
11.0 11.0 
11.0 1.0
11.0 5.0
3.0 5.0
1.0 5.0
1.0 8.0
11.0 1.0

 
 

Systematic Strategy, e.g.,vary one ball at a time 
(a good strategy in the absence of prior 

knowledge).
Student 18115 had 

a plan:
Blue Ball        Orange ball

11.0 11.0
5.0 11.0
10.0 11.0
11.0 1.0 
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Correct on first trial with a trial to be sure (likely that this 
student started with high prior knowledge)

Student 18185 got it 
right the first time:

Blue Ball        Orange ball

11.0 1.0
1.0 11.0
11.0 1.0

 
 

Collaboration with Carnegie-
Mellon University

• In collaboration with Ken Koedinger & Bruce McLaren, we 
investigated whether we could use production rules to code 
students’ strategies (n= 96) on this task.

• We developed specifications for scoring students’ strategies:
• “Strong” productions rules (i.e., content knowledge) in Newell’s 

terms (1990) fired when the student maximized the mass of A 
and/or minimized the mass of B.

• “Weak” rules (i.e., inquiry strategies) in Newell’s terms (1990) 
fired when students’ varied the mass of one ball at a time, did 
not repeat incorrect experiments, and stopped when the fastest 

possible velocity had been obtained.

 
 

Table 1: Weak and Strong Scores 
for the Cognitive Model

Cognitive Model
Strong Methods

For 0.71 (71/100)
Against 0.44 (238/539)

Weak Methods
For 0.57 (138/240)
Against 0.33 (37/111)
Partial-For 0.43 (78/183)

Neutral 0.68 (26/38)

• A "Correct one trial" protocol would be evidence the student used strong methods since 
s/he apparently had the knowledge to immediately solve the problem with no inquiry 
necessary. 

• A "Correct one trial" protocol would provide no evidence for whether the student used weak 
methods since not enough data is available ("neutral" was assigned in this case). 

• A "Correct and systematic" protocol provides evidence the student did not use strong 
methods, since multiple trials were needed and the strong rules discussed above were 
apparently not used, but it provides clear evidence for the use of weak methods.
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Findings from CMU collaboration 
(cont’d)

• the "For" evidence (0.71) is higher than the "Against" evidence (0.44), indicating 
that the strong rules appeared to model the "For" categories (e.g., "Correct one 
trial", "Correct two trials") better than it did the "Against" categories (e.g., 
"Correct and systematic").  

• The difference between the "For" and "Against" scores of the Weak Methods is 
a bit smaller (0.57 versus 0.33, respectively) but still high enough to be 
encouraging.

• These scores for “strong” and “weak” strategies corresponded very well with 
human coding.

• Thus, the production rules were successful at predicting both strong and weak 

methods (Horwitz, Gobert, & Koedinger, 2005).

• This gives us added confidence that the log data we acquire in this project will 
enable us to track students’ learning trajectory as they follow our progression of 
models.

 
 

Hot Spot 2:  Concord’s algorithms for auto-scoring Task 3: 
“What settings cause the blue ball to stop when it collides 

with the orange ball?”

Input sliders

Numerical data 
from run

Constructed 
text response

• Student has to 
“estimate” the 
mass of the hidden 
ball based on 
velocity of red ball.
• Track students’
iterations of this as 
index of 
systematicity in 
inquiry.

 
 

TL3 
time

TL3 
RdTsk

T3 
trials T3 values T3 Vx

T3 
#rtPr

T3 
success Q10A

T3 
%vary1

T3 
%rpt

T3 
#eqPr

T3 
#extrem

Pr
T3 

%clg
T3 

%frg

T3 
%goal 
Flips

T3 
CAT

2.5 73 2 2.0 v 5.0 
5.0 v 5.0 

-1.7, 
0.0,

1 1 that they must have 
have equal masses

1 0 1 0 1 0 0 B1

2.9 34 8 2.0 v 5.0, 
4.0 v 11.0, 
1.0 v 4.0, 

11.0 v 11.0, 
6.0 v 7.0, 
5.0 v 7.0, 
3.0 v 7.0, 
7.0 v 7.0, 

-1.71, 
-1.87, 
-2.4, 
0.0, -
0.31, -
0.67, -
1.6, 
0.0, 

2 1 they have to both have 
to be the same size

0.43 0 2 0 0.29 0.71 0.43 B2

2.7 130 1 5.0 v 5.0, 0.0, 1 1 match the orange 0 0 1 0 0 0 0 A
2 13 10 2.0 v 5.0, 

1.0 v 5.0, 
11.0 v 5.0, 
8.0 v 5.0, 

8.0 v 11.0, 
7.0 v 11.0, 
6.0 v 11.0, 
7.0 v 10.0, 
11.0 v 10.0, 
10.0 v 10.0, 

-1.71, 
-2.67, 
1.5, 

0.92, -
0.63, -
0.89, -
1.18, -
0.71, 
0.19, 
0.0, 

1 1 The mass must be 
almost as big as the 
other ball

0.89 0 1 0 0.67 0.33 0.33 B2

CC’s approach for Task 3-
Additional Categories for coding & 4 students’

data.

Additional categories we auto-coded are % of trials in which
~ set the masses as equal
~ set the masses as extremes
~ closer the the goal, further from the goal,
~ goal flips.
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Performance Assessments of Inquiry in Dynamica:  
Findings thus far

• These tasks are well-suited to assessing students’ systematicity because of the well-
defined domain, and numerical data inputted by students.

• We have developed analysis protocols & auto-coding for 4 inquiry hot spots in Dynamica. 

• These are auto-scorable, except for textual responses, i.e., explanation tasks.  

• Systematicity is machine-detectable in students’ actions, i.e., in the inputs they assign to 
objects, etc.

• Systematicity can be calculated across tasks but the domain needs to be very finely 
specified (i.e., velocity not Newtonian Mechanics).  This likely reflects students’
conceptual knowledge building piece by piece, at the concept level (acceleration, not 
Newton’s laws).

 
 

Performance Assessments of Inquiry in Dynamica:  
Plans for Aggregating Hot Spot data

Evaluating whether inquiry skills improve over time will involve aggregating hot 
spots. 

Aggregation & analysis can be done in 2 ways (and within each domain):
• type of hot spot (involves the same model-based inquiry strands), i.e., 

do kids get better at similar types of model-based inquiry tasks?
• type of inquiry skill, i.e., do kids get better at making 

predictions, using evidence, etc?

We assume that the skill development to which we refer here (as measured by hot 
spots) are skills that are difficult to hone, thus, aggregating them over multiple 
activities is a better way to assess their development.  

 
 

Overall Research Goals
• Evaluating whether inquiry skills improve over time.

• Investigate relationship between inquiry and content learning.

• Test for development of inquiry strategies across domains (physics, biology, chemistry) 
~ complicated by task difficulty increasing over time 
~ complicated by the co-evolution of the development between domain-knowledge and 
inquiry strategies 
~ complicated by the likelihood that students build knowledge in small, conceptual pieces, 
i.e., about acceleration or velocity as opposed to about Newton’s Laws).

• Investigate whether we can bootstrap inquiry in service of content learning.

• Lastly, using log files we seek to identify at risk students- i.e., students whose inquiry 
strategies are buggy (proposal pending with CMU; Horwitz, Gobert, & Koedinger, 2005).
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General affordances of 
this approach

• Data collection. Because all activities are on-computer, we can 
effortlessly and accurately monitor and record every user response and 
action. 

• Control. Because we have complete control over the learning environment,
we can simplify it to make the content more accessible and the 
experiments easier to perform than real systems. This can save time and 
increase the complexity of the science concepts studied. 

• Reproducibility. All aspects of the assessment can be exactly 
reproduced—the experiment, the scaffolding, and the hints. Furthermore, 
there are no uncontrolled clues for the user, such as the tone of a human 
response or non-verbal clues.

 
 

Affordances (cont’d)

• Integration with instruction. The same model and technical 
environment used for learning activities can be used for assessment. 
The assessment can be part of instruction, so that additional class time 
is not required; assessment is “seamless”.

• Convenience. No equipment other than a computer is needed and no 
local training is needed for reliable results. 

• Scalability. Because only a networked computer is needed, we can 
conduct this research anywhere and the resulting assessment tools 
can be used worldwide.

 
 

Other synergistic activities
• Building on previous technologies of Pedagogica and the Web-based Inquiry Science 

Environment (WISE), in the TELS project (telscenter.org), the Concord Consortium, 
UC-Berkeley, and University of Toronto (Jim Slotta) are developing a powerful new 
open source authoring system that allows researchers or developers to create highly 
interactive java-based activities that are delivered to classrooms via the Internet.

• This system emphasizes interoperability with other java-based learning tools, thanks 
to a new Scalable Architecture for Interactive Learning (SAIL) that has guided our 
development.

• Easy to use authorware allows teachers to customize curriculum activities to their 
specific classroom needs. This authoring environment can work with various content 
engines.

• Activities can be downloaded from an open content library and 
reshaped by authors who can add or subtract curriculum or 
assessment elements.
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Beyond Compartmentalized Curricula in Science and Mathematics: 
Educational and Research Implications of  Complex Systems1 

Michael J. Jacobson, Ph.D. 
 

Learning Sciences Lab 

National Institute of  Education, Nanyang Technological University, 

Singapore 637616 

jacobson@nie.edu.sg 

 
“The central task of  a natural science is to make the wonderful commonplace: to show that 

complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos.” 
-- Herbert Simon 

 

The teaching and learning of  science and mathematics in the 21st century faces many 
challenges. Of  these, two are arguably fundamental. First, many current science and mathematics 
curricula have been criticized for superficially covering too many subjects, with the consequence 
that students typically fail to achieve a solid understanding of  even a single domain (National 
Research Council, 1996, 2000). A second challenge, which conflicts with the first, is that there is 
approximately a 20 to 30 year gap that exists between the articulation of  new scientific 
knowledge and the integration of  these ideas into mainstream education. Further, with respect to 
the second challenge, it seems unlikely that conceptually challenging concepts and skills from 
21st century sciences can be merely “added” to the already bloated and over-stretched science 
and mathematics curriculum.2 

One approach for addressing these challenges is to look carefully at trends in the nature of  
21st century scientific inquiry. Such an analysis could consider ways that (a) the classroom 
teaching of  science and mathematics and (b) the conduct of  scientific research in the learning 
sciences and in science and mathematics education might be at variance with new scientific ideas 
and methods. This paper briefly considers these two areas in turn. 

                                                 
1 This paper synthesizes material from Jacobson and Wilensky (2006). 
2 There is also a “meta-challenge” related to a theme of this workshop, that is, what should 
be the basis for cross-domain research that will investigate challenges to learning science and 
mathematics such as these? 



BRAIN 
 

26

The Nature of  Modern Scientific Inquiry and Complex Systems Curricular Integration 

in Science Education 

Over a decade ago, Stewart Kauffman (1995) observed that the relentless reductionism (i.e., 
increasingly fragmented and narrowly defined and isolated subspecialties) of  the past 300 years 
in the history of  science may be coming to an end.  Instead, what appears to be emerging is a 
new kind of  science (Bar-Yam, 1997; Gell-Mann, 1994; Holland, 1995; Kauffman, 1995; 
Wolfram, 2002) in which scientists in multidisciplinary fields study various types of  complex 
physical and social systems. These investigations employ a similar set of  conceptual perspectives 
or principles (e.g., multi-scale hierarchical organization, emergent patterning, dynamical attractors, 
scale-free networks) and methods of  doing science (e.g., computational modeling, network 
analysis) that function as a shared framework for the discourse and representations used in the 
conduct of  scientific inquiry (Jacobson & Wilensky, 2006). These new theoretical conceptual 
perspectives about complex systems in conjunction with rapid advances in computational 
technologies, enable researchers to study aspects of  the real world for which events and actions 
have multiple causes and consequences, and where order and structure co-exist at many different 
scales of  time, space, and organization. Using what may be called a complex systems framework 
for science, critical behaviors of  systems that were systematically ignored or over-simplified by 
classical science can now be included as part of  routine scientific inquiry in the physical and 
social sciences (Bar-Yam, 1997; Gell-Mann, 1994; Kauffman, 1995; Prigogine & Stengers, 1984). 

However, little of  the conceptual power embodied in the rapidly developing perspectives 
and tools of  complex systems has informed the educational experience of  students at any level, 
save that of  graduate students in selected scientific areas. This absence from mainstream 
education creates many missed opportunities for building links between new 21st century 
scientific knowledge and what students learn in schools. Further, given the integrative function 
of  complex systems ideas in actual scientific research, there is also the potential for this 
knowledge to help provide unifying conceptual frameworks to address the problems of  
fragmented and compartmentalized curricula in science and mathematics.  

There are many ways that complex systems concepts might be infused into the curricular 
content of  school subjects that could form the basis of  a new type of  scientific literacy 
(Jacobson, 2001). Across many domains, concepts derived from a complex systems analytical 
perspective have the potential to provide organization to the otherwise bewildering properties of  
diverse phenomena in the physical and social sciences. For example, complex systems concepts 
such self-organization and positive feedback may be seen to apply in biological systems such as 
insect colonies (Dorigo & Stuetzle, 2004; Resnick, 1994) in social science systems such as 
economics (Anderson, Arrow, & Pines, 1988; Epstein & Axtell, 1996), and in engineering 
(Amaral & Ottino, 2004; Ottino, 2004). Research is needed to explore if  the use of  appropriate 
pedagogies, curricular materials, and learning tools helps students understand that complex 
systems conceptual perspectives have relevance across what have traditionally been taught as 
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separate compartmentalized subject areas in the natural sciences such as chemistry and biology 
as well as the social sciences such as psychology and sociology. If  so, then this would help justify 
the need for curricular reforms at the college and pre-college levels in order to obtain conceptual 
and curricular coherence and interconnectedness. In particular, cognitively powerful cross 
domain links may be fostered by the design of  modeling and simulation tools that scaffold 
structural and functional similarities between traditionally regarded distinct sets of  physical and 
social science phenomena. For instance, at first glance, there is no reason to believe that a 
network capturing a cell’s genetic network and a network capturing the topology of  the World 
Wide Web would have much in common. It has been demonstrated, however, that many physical 
and social networks are similar in the sense that their degree distribution is scale-free (Barabasi & 
Albert, 1999). This similarity is explained by an agent-level mechanism of  growth and 
preferential attachment. Another area of  research could explore whether a complex systems 
infused curriculum allows both for depth of  coverage of  traditional physical and social science 
subjects and for cross-disciplinary conceptual and cognitive "hooks" that may support far 
transfer of  knowledge to dramatically new situations and problems.  

In addition, complex systems phenomena are well suited to problem- and inquiry-centered 
learning approaches that implement constructivist models of  learning and teaching. Thus 
research could investigate whether a learner centered curriculum that integrates complex systems 
perspectives helps address the unfortunate situation whereby many students view science as rote 
memorization of  isolated and decontextualized facts for which they often see little use in their 
daily lives. Research could also explore if  such a curricular approach helps make 
cross-disciplinary connections easier for teachers to teach and cognitively easier for students to 
appreciate and to learn, while also employing content in the physical and social sciences that is 
conceptually principled and current for the 21st century. 

 
Implications of  the Sciences of  Complex Systems for the Learning Sciences 

In addition to the curricular and learning implications of  complex systems ideas, there are 
important theoretical and methodological issues for the learning sciences and for science and 
mathematics education that are raised by what might be called the complex systems framework 
of  conceptual perspectives and principles. We use the term “framework” as it does not appear 
that there is a general “theory of  complex systems” at this time. Rather, the multidisciplinary 
fields that study various types of  complex systems use a set of  conceptual perspectives or 
principles (e.g., multi-scale hierarchical organization, emergent patterning, dynamical attractors, 
scale-free networks) and methods of  doing science (e.g., computational modeling, network 
analysis) that function as a shared framework for the discourse and representations used in the 
conduct of  scientific inquiry. As such, various fields can formulate specific theoretical 
perspectives of  relevance to the study of  particular complex systems of  interest that still share 
common elements due to their grounding in the complex systems framework.  
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As Jacobson and Wilensky (2006) argue, complex systems perspectives provide new 
methods and insights for learning science research related to how students come to understand 
challenging ideas. As an example, let us consider how complex systems perspectives may enhance 
or extend theory and research in the learning sciences and science and mathematics education 
through the use of  computational modeling of  learning and education systems. 

It has been argued that there has been a recent major shift in what constitutes legitimate 
sources of  scientific information (Jackson, 1996). The origins of  modern science are often 
credited to Aristotle and his use of  careful observations to obtain information upon which to 
make informed decisions rather than the logical argumentation of  philosophical beliefs. The next 
metamorphosis in the conduct of  inquires we now regard as “science” occurred with the 
intellectual contributions of  Brahe, Galileo, Newton, Kepler, Liebniz, and Euler who not only 
advanced the field of  mathematics, but who also demonstrated how new scientific discoveries 
could be made through the use of  information derived from mathematical manipulations of  
observational data. The remarkable scientific achievements of  the ensuing 300 years were 
predicated on these two sources of  scientific information. Indeed, observational and 
mathematically derived information have been the norm in virtually all of  the published research 
in the learning and cognitive sciences and in education to date. 

However, Jackson (1996) has proposed that we are in the midst of  a second historical 
metamorphosis in the conduct of  science, one that involves the use of  computational tools to 
generate a third legitimate source of  scientific information. In addition, others, such as Pagels 
(1988), have observed how the use of  computational tools in science allows dramatically 
enhanced capabilities to investigate complex and dynamical systems that otherwise could not be 
systematically investigated by scientists. These computational modeling approaches include 
cellular automata, network and agent-based modeling, neural networks, genetic algorithms, 
Monte Carlo simulations, and so on that are generally used in conjunction with scientific 
visualization techniques. Examples of  complex systems that have been investigated with 
advanced computational modeling techniques include climate change (West & Dowlatabadi, 
1999), urban transportation models (Balmer, Nagel, & Raney, 2004; Helbing & Nagel, 2004; 
Noth, Borning, & Waddell, 2000), and economics (Anderson et al., 1988; Arthur, Durlauf, & 
Lane, 1997; Axelrod, 1997; Epstein & Axtell, 1996). New communities of  scientific practice have 
also emerged in which computational modeling techniques, in particular agent-based models and 
genetic algorithms, are being used to create synthetic worlds such as artificial life (Langton, 1989, 
1995) and artificial societies (Epstein & Axtell, 1996) that allow tremendous flexibility to explore 
theoretical and research questions in the physical, biological, and social sciences that would be 
difficult or impossible in “real” or non-synthetic settings.  

The typical approach used by researchers involved with computational science tools such as 
agent-based modeling is to articulate a model of  the system of  interest in terms of  hypothesized 
rules that define the interactions between agents and between agents and their environment. In 
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scientific computational modeling work, as opposed to explorations of  modeling by 
mathematicians, there generally is an existing body of  observational and mathematical 
information about the system that allows (a) an initial specification of  the parameters for the 
model and (b) a validity check of  the articulated model with the real world data, generally with 
iterative revisions to the model in terms of  the parameters or rules the agents in a model follow 
in their interactions in the synthetic world. Once the researcher has demonstrated a valid model 
for a particular system compared to available data, it is then possible to run “computational 
experiments” in which what-if  scenarios about the behavior of  the system may be explored to 
understand the system under different conditions than the observed data and to perhaps 
envision different possible futures for how the system might behave over time. It is important to 
understand, however, that nearly all examples of  complex systems have important random or 
chaotic (i.e., sensitivity to initial conditions) factors that mean there is a high probability each run 
of  the model may be different, sometimes in small ways but perhaps in dramatically large and 
chaotic ways (i.e., the “butterfly effect”).  

Given the development of  sophisticated computational modeling tools and their increasing 
acceptance in a wide range of  scientific fields in the physical and social sciences, we argue that 
there is great potential to accept computationally generated information as part of  research in 
the learning and cognitive sciences that explores complex learning, socio-cognitive, and 
educational systems. We believe that such work has enormous potential in four broad ways. First, 
the articulation of  models, particularly those that are “bottom-up” such as agent-based models, 
often helps researchers distill their qualitative intuitions about critical factors that might be most 
responsible for the behavior of  the system of  interest. This “analytical catalyst” function of  
computational model building is often quite valuable when confronting systems of  
multi-dimensional and multi-level complexity. Second, complex systems models then become 
scientifically inspectable artifacts that, as mentioned above, may be compared to real world data 
and iteratively revised to improve the fit of  the model. Third, models validated with one or more 
datasets may be used to explore the behavior of  the system by varying model parameters (ideally 
with multiple runs involving all parameter combinations to investigate stochastic properties of  
the system). Fourth, such models may function as a tool to help generalize the findings from the 
observed and modeled system(s) to similar types of  systems that probably have different specific 
local features.  

In research into science and mathematics education and the learning sciences to date, there 
have been few examples of  computational modeling along the lines discussed in the previous 
paragraph. For example, Lemke and Sabelli (2004) have proposed building “SimSchool” or 
“SimDistrict” simulation programs that would not just model existing school or school district 
systems, but also could be used to create synthetic schools and district systems and to study their 
evolution over time in terms of  needs, problems, and probable outcomes. Recently, actual 
systems have been developed along these lines. For example, researchers have done agent-based 
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simulations in areas of  educational policy such as school choice where parents and school 
officials are agents in the simulation (Lauen, 2004; Maroulis & Wilensky, 2005, 2005). 
Researchers are also using network analysis methods to study topics ranging from how social 
structure impacts technology adoption in schools (Frank, Zhao, & Borman, 2004) to the role of  
social structure on student achievement (Maroulis, Griesdorn, & Gomez, 2005). Overall, there 
would seem to be great potential for complex systems and computational modeling techniques 
to enhance science and mathematics educational and learning sciences research involving micro 
and macro levels of  cognitive, learning, and educational systems, such as the evolution of  
cognitive representational networks, design experiments of  technology interventions in 
classrooms, and social network analysis of  collaborative interactions patterns. 

 
Conclusion 

The teaching and learning of  science and mathematics faces two fundamental challenges 
that conflict with each other.  First, the fragmented and superficial coverage of  too many 
subjects is widely criticized for contributing to poor student learning in science. Second, there 
has typically been a decades long gap between the generation of  new scientific knowledge and its 
integration into college and pre-college curricula. In this paper, it is argued that one way to 
address these challenges is to infuse knowledge from emerging multi-disciplinary scientific 
research, in particular work related to the study of  complex systems, into K-16 curricula in the 
physical and social sciences. It is also argued in this paper that there is considerable potential for 
complex systems conceptual perspectives and methodological tools, such as agent-based 
modeling, to enhance research in science and mathematics education and in the field of  the 
learning sciences. The overall goal, of  course, is for students and citizens of  the new century to 
understand many of  these exciting new ideas and perspectives about how the world works, or, in 
the words of  Nobel Laureate Herbert Simon (1996), “to make the wonderful commonplace: to 
show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in 
apparent chaos.” 
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Social science systems such as segregation patterns, 
economics, and income distribution patterns

Over time, students learn complex system 
perspectives:

Relevant to separate subject areas in both the physical 
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Saturday about the modification I made to the 
model of Vygotskian learning that you and Dor
Abrahamson created, it occurs to me that there's an 
interesting observation to make about the 
modified model.  On each trial, here's a pairing of 
the agents.  In the original model, the less well
performing of the pair modifies its behavior to
model the better performing if the better 
performing agent was within the specified "zpd".  
But there is no modification of the better 
performing agent based on the interaction.
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Now with the "-t" modification, half of the agents each turn 

(the better performing agent of each pair) perform worse 
than they know how to, in order to help the less 
performing agent of the pair learn to perform better.  Yet 
despite the fact that half of the agents perform worse each 
cycle, the overall learning of the whole set of agents 
proceeds faster than otherwise.  This emergent global 
property might be called "the teacher effect". ;-)   
Education generally can be seen as a sort of "investment", 
in which short term costs lead to longer term benefit.  
Perhaps this simple model can help us explore this aspect 
of education, teaching, and learning. -- Jim Levin
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Individuals’ conceptions of knowledge and knowing have been shown to influence 
learning in multiple ways (Hofer, 2001), and what has been called “personal epistemology” 
has been investigated by developmental psychologists, educational psychologists, teacher 
educators, higher education researchers, and science and math educators. Researchers have 
typically been interested in how individuals come to know, the theories and beliefs they hold 
about knowing, the patterned sequence in which such conceptions develop, and the manner in 
which learners’ epistemologies are a part of and an influence on the cognitive processes of 
thinking and reasoning.  

In this talk, I will provide an overview of the general construct and its relation to 
learning and education, examine the issues of domain generality and domain specificity, and 
then focus on epistemic understanding in mathematics and science. I will review some of the 
conceptual background and research and discuss multiple methodological approaches for 
investigating this construct in math and science, with suggestions for researchers. I will also 
provide examples from my own research and will discuss two recent projects in my research 
lab, one examining students’ epistemic metacognition as they conduct an online search for a 
science assignment, and another on how students view the theory of evolution and how this is 
related to epistemic beliefs, science education, and conceptual change. Throughout the talk I 
will provide opportunities for interaction and discussion. 
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There is compelling evidence to suggest that individuals hold both general and domain 
specific epistemic understanding (Hofer, in press; Muis, Bendixen, & Haerle, in press). Early 
research in this field addressed epistemology as either a developmental construct (Baxter 
Magolda, 1992; Belenky, Clinchy, Goldberger, & Tarule, 1986; King & Kitchener, 1994; 
Kuhn, 1991; Perry, 1970) or a system of beliefs (Schommer, 1990), both with the 
presumption that learners’ epistemologies were domain general. Researchers have since 
investigated whether these epistemic beliefs differ by discipline (Buehl, Alexander, & 
Murphy, 2002; Hofer, 2000), and it appears that the structure of epistemic understanding is 
consistent, but that there are mean differences in beliefs, for example, in regard to the 
perception of the certainty of knowledge within a discipline. A third line of research includes 
beliefs that are particular to disciplines, such as history (Wineburg, 1991), math  (Hofer, 
1999; Schoenfeld, 1983, 1992), or science (Bell & Linn, 2002; Conley, Pintrich, Vekiri, & 
Harrison, 2004). Thus, as noted elsewhere (Hofer, in press), individuals can be queried about 
their general epistemic beliefs (e.g., “Truth is unchanging”), disciplinary perspective on 
beliefs (e.g., “Truth is unchanging in this subject”), and  discipline-specific beliefs (e.g. “A 
good way to know if something is true is to do an experiment”). Such distinctions are 
increasingly important in understanding the relations among beliefs, cognition, and academic 
performance, and are critical in addressing beliefs of both teachers and students.  

In terms of the scope of what is included within this construct at the domain-general 
level, a review of the literature (Hofer & Pintrich, 1997) suggested that there are four 
dimensions that appear consistently within the early primary literature on personal 
epistemology and that are congruent with the philosophical definition of epistemology. These 
four dimensions are organized into two areas, beliefs about the nature of knowledge, which 
includes the dimensions of certainty and simplicity of knowledge, and about the nature of 
knowing, which includes the source of knowledge and justification for knowing.  This 
excludes beliefs that appear in some schemes and which may well be related, such as beliefs 
about the role of the instructor (Baxter Magolda, 1992), or about intelligence or the speed of 
learning (Schommer, 1990), or beliefs about learning preferences. Such beliefs are not 
represented across models nor typically considered a part of epistemology by philosophers.  
Although these are important constructs in learning, I think we are likely to develop better 
and more precise models of the relation between epistemic understanding and other beliefs, 
attitudes, values, dispositions and strategies for learning, if we err on the side of parsimony, 
coherence, and philosophical clarity. This is by no means an issue confined to domain-general 
models, as some of what is discussed as epistemological within the disciplines also lies 
outside these bounds. 

Beliefs about what it means to know and do math and science have been a particular 
fruitful avenue of inquiry for researchers interested in math education (Muis, 2004) and 
science education (Songer & Linn, 1991; Southerland, Sinatra, & Matthews, 2001; C.-C. Tsai, 
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2000; C. C. Tsai, 1999b). Although there is no firm agreement as yet about either the 
dimensionality of these constructs or about reliable forms of measurement, there is 
reasonable overlap with some of the dimensions suggested above. I will provide a brief 
overview of work in this area and discuss various methodological approaches. In addition, we 
will examine current “nature of science” (NOS) research (Abd-El-Khalick & Akerson, 2004; 
Abd-El-Khalick, Bell, & Lederman, 1998; Lederman, 2004) and discuss how this may be 
utilized by researchers in understanding both students’ and teachers’ epistemic understanding.  
We will also examine how math beliefs have been codified and studied (De Corte, Eynde, & 
Verschaffel, 2002; Muis, 2004; Schoenfeld, 1992). 

The importance of this work in understanding student learning has been demonstrated in 
a series of studies, providing evidence that beliefs can influence learning in powerful ways.  
Epistemic beliefs influence text comprehension, (Schommer, 1990), strategy use, cognitive 
processing (Kardash & Howell, 2000), conceptual change (Andre & Windschitl, 2003; Mason, 
2003; Mason & Boscolo, 2004; Qian, 2000; Windschitl & Andre, 1998), and motivation 
(Buehl & Alexander, 2005), for example. I will describe similar ongoing research in my lab 
involving investigations into students’ understanding and acceptance of the theory of 
evolution, and how this is related to epistemic beliefs, science education, and conceptual 
change. 

Additional methodological approaches to investigating beliefs about math and science 
have also included case study analysis of videotaped science lessons, with examination of 
epistemological stances of teachers, tasks, and practices. This has included various levels of 
schooling, including elementary school science classes  (Louca, Elby, Hammer, & Kagey, 
2004), secondary school physics classes (C. C. Tsai, 1999a), and college chemistry courses 
(Hofer, 2004b). As part of our discussion of this approach, we will examine a videotape of a 
typical U.S. science lesson and in small groups discuss the underlying epistemological 
assumptions of science suggested by the teacher and the tasks and how the students may 
interpret this.  

Epistemic understanding of science can also be explored as a form of metacognition, 
which creates the possibility of integrating multiple perspectives of the construct. Viewed as a 
form of meta-knowing (Kitchener, 1983), or knowing about knowing, personal epistemology 
can be conceptualized as a set of beliefs, organized into theories, operating at the 
metacognitive level (Hofer, 2004a). From this perspective, epistemic theories develop in 
interaction with the environment, are influenced by culture and education and other context 
variables, operate at both the domain-general and domain-specific level, are situated in 
practice, and are activated in context. The primary methodological approach for exploring the 
metacognitive nature of epistemic assumptions and beliefs has been the think-aloud protocol, 
used, for example, in the investigation of epistemological thinking about history (Wineburg, 
1991, 1998).  Coupled with retrospective interviews (Wineburg, 1998), this technique has 
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considerable power. Recent research using think-aloud protocols during online searching for 
a simulated class assignment suggests that students do metacognitively monitor the 
epistemological nature of their learning, and that at some level this is accessible to 
researchers (Hofer, 2004a). I will provide a brief overview of this approach with examples 
from research in my lab.  

My goals for this session are to provide an overview of multiple approaches to 
investigating learners’ epistemologies in math and science, to illustrate the importance of this 
work, and to provide opportunities for discussion among researchers. 
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In neuroscience, considerable progress has been made in understanding the neural 
underpinnings of  the essential skills taught by educators, such as numeracy, literacy, and 
visual/spatial reasoning. However, this progress is mostly theoretical, and not bridged yet with 
the development of  science education research as well as with educational practice. For instance, 
still there are many “pervasive neuromyths that have taken root in education and which give a 
flavor of  the information being presented to teachers as neuroscientific facts” (Goswami, 2006). 
One of  such myths, originated from an over-literal interpretation of  hemispheric specialization, 
suggests that children should be identified as either ‘left-brained’ or ‘right brained’ learners. 
Teachers are told that the left brain dominates in the processing of  language, logic, mathematical 
information, while the right brain is said to dominate in the processing of  spatial transformations, 
images and pictures. The other myth suggests that children’s cognitive styles should be identified 
as either visual or verbal, and that learning materials should fit a child’s preferred cognitive style. 
Many in education accept claims such as these as established facts. The current presentation will 
focus on the current neuroscience findings on visual/spatial imagery and visual cognitive style, 
and their relevance to educational practice.  
 
The neural correlates of  object versus spatial imagery 

It is now well-established that both visual imagery and visual perception rely on sets of  
distinct subsystems (Kosslyn, 1994), and a major concern of  neuroimaging studies that identified 
the cerebral bases of  visual imagery has been to assess the extent to which visual imagery and 
visual perception share common cerebral structures (Kosslyn, Thomson, & Alpert, 1997).  

It has been established that both visual perception and visual imagery rely on “what” and 
“where” pathways, also called the object and spatial relations pathways (Haxby et al., 1991; 
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Ungerleider & Mishkin, 1982).  As shown in Figure 1, the object pathway runs from the 
occipital lobe down to the inferior temporal lobe (area 37). The spatial relations pathway runs 
from the occipital lobe up to the posterior parietal lobe (areas 7, 39, 40).  According to this 
dichotomy, object (figurative) aspects of  both imagery and perception, such as shape and color, 
are processed along the ventral route areas, while the dorsal route processes object localization. 
spatial attributes, and guiding movements. For example, Farah et al. (1988) demonstrated that 
lesions in the temporal cortex disrupted performance of  tasks that rely on mental images of  
objects and their properties, whereas such lesions did not disrupt spatial imagery.  In contrast, 
lesions in posterior parietal cortex had the reverse effects (see also Farah et al., 1988).  Similarly, 
in neuroimaging studies, spatial and object imagery tasks led to very different patterns of  brain 
activity (Kosslyn, Ganis & Thompson, 2001). For example, when participants visualized a route 
on a map that they had memorized prior to the experiment, the parietal lobes were activated, but 
when participants visualized faces or colors, the temporal lobes were activated (Uhl et al., 1990).  
However, this distinction is not absolute, since most of  the neuroimaging studies that dealt with 
spatial imagery not only reported dorsal activation but also activation along the ventral route and 
vice versa. 
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Figure 1. Areas activated during visual imagery. A17: early visual cortex (V1, calcarine sulcus); A18: ; A19; : A37: 

occipito-temporal junction; A21: medial temporal cortex; A20: inferior temporal cortex; A7: superior 

parietal cortex; A39: inferior parietal cortex (angular gyrus); A40: inferior parietal cortex (supramarginal 

gyrus); A9: parts of  the superior and middle frontal gyri; A10: parts of  the superior and middle frontal 

gyri; A11: the orbital gyrus, gyrus rectus, and parts of  the superior frontal gyrus. 

 
Divergent neuroimaging results were reported regarding the involvement of  the early visual 

cortex (Broadmann area 17, 18) during visual imagery (see Figure 1). Some researchers reported 
activation of  early visual cortex, whereas others have not (Roland & Gulyas, 1994; Kosslyn, 
Ganis, Thomson, 2001; Mellet at al, 1998). The early visual cortex had been proposed to be a 
key-part of  the neural substrate of  the so-called visual buffer (Kosslyn, 1994). This buffer would 
be shared by both perception and imagery and is thought to implement a topographic 
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representation of  either a perceptual or mental image. Recent results confirm that the type of  
imagery is a crucial feature from explaining discrepancies. Most of  the studies dealing with 
spatial imagery indeed have not reported early visual cortex activation, whereas in those studies 
in which activation was noted, object imagery tasks were used (Mazard et al., 2004). 
 
Individual differences in object versus spatial imagery 

Dissociation between object and spatial imagery also has been found in research on 
individual differences in imagery (Hegarty & Kozhevnikov, 1999; Kozhevnikov, Hegarty, & 
Mayer, 2002; Kozhevnikov, Kosslyn, & Shepard, 2005).  Kozhevnikov et al. (2005) reported 
that verbalizers (i.e., those who prefer to use verbal-analytical coding versus imagery) typically 
performed at an "intermediate" level on imagery tasks, whereas visualizers  (i.e., those who 
reported strong and consistent preferences for processing information visually) could be divided 
into a group that scored poorly on spatial imagery tasks (e.g., mental rotation task) but excelled 
on object imagery tasks (e.g., degraded pictures task) and a group that excelled on spatial imagery 
tasks but scored poorly on object imagery tasks (see Figure 2). Thus, two types of  imagers were 
identified: object imagers who tend to construct colorful, pictorial, and high-resolution images 
of  individual objects, and spatial imagers who tend to use imagery to schematically represent 
spatial relations among objects and to perform complex spatial transformations. Kozhevnikov et 
al. also found that object imagers encoded and processed images holistically, as a single 
perceptual unit, whereas spatial imagers generated and processed images analytically, part by part. 
 
 
 
 
 
 
 
 
 
 Figure 2. Performance of  object visualizers, spatial visualizers, and verbalizers on object (degraded pictures) and spatial 

(mental rotation) imagery tasks 

 
Blajenkova et al. (2005) reported that scientists and engineers tended to be spatial imagers, 

while visual artists tended to be object imagers. Furthermore, visual artists’ object imagery scores 
tended to be above average when compared with the rest of  the professional groups, yet their 
spatial imagery scores tended to be below average.  Scientists’ spatial imagery scores, on the 
other hand, tended to be above average, but their object imagery scores tended to be below 
average. The finding that professional domain, where work involves extensive use of  object or 
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spatial imagery, differentially predicted scores on object and spatial imagery measures provides 
ecological validation of  the distinction between object and spatial imagers. The analyses also 
revealed that none of  the professional groups showed above average proficiency in both types 
of  imagery, supporting the idea of  the existence of  a trade-off  between object and spatial 
imagery abilities (Kozhevnikov et al., 2005). Even architects, whose work requires both object 
and spatial imagery skills were not good imagers in general, scoring high both on both types of  
imagery measures. Indeed, the data are consistent with previous research suggesting that 
characterizing one as a “good” or “bad” imager is inappropriate, and the present research 
specifically demonstrates the importance of  distinguishing between object and spatial imagery 
abilities. Furthermore, the results of  Hegarty & Kozhevnikov (1999) revealed that the use of  
spatial images was associated with success in mathematical problem solving, whereas use of  
pictorial images was negatively correlated with success. Furthers studies by Kozhevnikov, 
Hegarty & Mayer (2002) showed that object imagers have difficulties understanding science 
graphs, tending to interpret them as concrete pictures, but spatial imagers tended to interpret 
science graphs as abstract spatial representations and correctly.  

Recent neuroimaging provided data that the two groups of  imagers differ qualitatively in 
their visual processing. Motes et al (2006) found that object imagers showed greater activation, 
bilaterally, in parts of  the occipito-temporal junction (A19-37), and they also showed greater 
activation in parietal areas (A7 and A40) than spatial imagers. Spatial imagers, on the other hand, 
showed significantly greater activation, bilaterally, in the occipito-parietal junction (A7/19), 
occipital (A17-18), superior temporal (A22), posterior cingulate, and frontal/prefrontal areas. 
Spatial visualizers also showed significantly greater activation in parts of  the left 
occipito-temporal junction (A37/21). The results suggest that the greater parietal activations 
occurring for the object imagers and the greater left occipito-temporal activations occurring for 
the spatial imagers might be due to the groups trying to compensate for processing 
“weaknesses.” 

 
Bridging Neuroscience Findings  to Science Education 

Numerous studies have been carried out to understand the role of  visual-spatial 
representations in learning. However, most studies investigating the effect of  mental imagery on 
learning have treated imagery as a general and undifferentiated skill, yet the research cited above 
challenges this view. Kozhevnikov et al (2002) found that a large group of  college students, 
object imagers, had serious difficulty interpreting graphs as abstract schematic representations 
and instead interpreted them as pictorial representations. These students will clearly have 
difficulty solving science and mathematics problems that involve processing or creating abstract, 
schematic, spatial representations (e.g., graphs). How might we best teach these students to solve 
such science and mathematical problems?  

One possible approach is to teach object imagers represent and solve science and 
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mathematics problems by using verbal-analytical strategies rather than spatial strategies requiring 
spatial imagery abilities that they do not have. Another possible way of  teaching object imagers is 
to give them explicit instruction on how visual, schematic, and verbal representations relate to 
each other. For example, interactive computer simulations (e.g., White, 1993) that include verbal 
representations, schematic graphics, and iconic representations, might be effective for these 
students. Having all these types of  representations available and demonstrating how each of  
them translates into the others might help object imagers translate concrete pictorial 
representations into a more schematic spatial form. Furthermore, instruction could be aimed 
explicitly at teaching students to construct and interpret different types of  representations and to 
translate between different representations of  the same phenomenon, for instance, 
microcomputer-based learning (MBL) technologies designed specifically to pair physical events 
with their graphical representations in real time and provide students with the possibility of  
exploring connections between them. Students immediately see the graph made by a moving 
object with the results appearing instantly on the graph with each move made by the object. 
Researchers have found a significant change in students' ability to interpret kinematics graphs 
and overcome graph-as-picture misconceptions after MBL intervention (e.g., Kozhevnikov & 
Thornton, 2006; Linn, Layman, & Nachmias, 1987; Mokros & Tinker, 1987; Thornton & 
Sokoloff, 1990). 

However, we must note that although concrete pictorial images do not contribute to science 
problem solving, this type of  imagery has been found to be very useful for enhancing memory 
(Presmeg, 1986), as well as in social studies classes (Danzer & Newman, 1992). Such images 
provide a quick means of  recall and can help to illuminate the subject. Thus, the utility of  a 
particular type of  imagery depends in part on the task; it is not likely that any type of  imagery is 
necessarily or universally superior to any other type. In summary, the results highlight the need 
for research that characterizes which type of  imagery facilitates learning and reasoning in specific 
domains. We not only propose that instructional strategies not only be designed to teach students 
to construct and interpret different types of  visual-spatial representations but that different 
students can be taught strategies for translating material to representations that are compatible 
with their own preferred cognitive style. 

In summary, recent neuroscience data reject the myth about “right” hemisphere responsible 
for visual processing, since it occurs in both hemispheres. Also, it will not be useful to debate 
whether visualizers are more successful in learning than verbalizers or whether imagery in 
general enhances or impairs performance on cognitive tasks. In order to make optimal use of  the 
strengths of  visual-spatial processing, we need to explore the relationships between different 
types of  imagery and performance in various domains. Moreover, the question remains why 
people who are good at object imagery tend not to develop their spatial imagery ability, and vice 
versa. One way to grapple with this issue is to discover whether people can be trained to use 
their less-preferred type of  imagery effectively. 



BRAIN 
 

55

References 

Blajenkova,  O.   Do members of  different professions have the same type of  imagery?   
Paper submitted to Psychonomic Buleltin and Review. 

Danzer, G. A., & Newman, M. (1992). Excerpt from “Tuning In,” a curriculum development  
project. The camera's eye. Imagery and Technology, 83, 134 

Farah, M. J., Hammond, K. M., Levine, D. N., & Calvanio, R. (1988). Visual and spatial mental  
imagery: dissociable systems of  representations. Cognitive Psychology, 20, 439-462. 

Goswami, U. (2006) Neuroscience and education: From research to practice? Nature Reviews  
Neuroscience. Advance online publication. www.nature.com/reviews/neuro 

Haxby, J. V., C. L. Grady, B. Horwitz, L. G. Ungerleider, M. Mishkin, R. E. Carson, P.  
Herscovitch, M., Schapiro, B. & Rapoport, S. I. (1991). Dissociation of  object and spatial 
visual processing pathways in human extrastriate cortex. Proceedings of  the National 
Academy of  Sciences of  the United States of  America, 88, 1621-1625.  

Hegarty, M. & Kozhevnikov, M. (1999). Types of  visual-spatial representations and mathematical  
problem solving. Journal of  Educational Psychology, 91, 684-689. 

Kosslyn, S. M. (1994). Image and brain: The resolution of  the imagery debate. Cambridge, MA:  
MIT Press 

Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of  imagery. Nature  
Reviews Neuroscience,  2, 635 -642. 

Kosslyn, S. M., Thomson, W. L., & Alpert, N.M. (1997). Neural systems shared by visual imagery  
and visual perception: A positron emission tomography study. NeuroImage, 6, 320-334. 

Kozhevnikov, M. Hegarty, M. & Mayer, R. E. (2002).  Revising the visualizer/verbalizer  
dimension: Evidence for two types of  visualizers.  Cognition & instruction, 20, 47-77. 

Kozhevnikov, M.; Kosslyn, S.; Shephard, J. (2005) Spatial versus object visualizers: A new  
characterization of  visual cognitive style. Memory & Cognition. 33, 710-726. 

Kozhevnikov, M. & Thornton, R. (2006). Real-time data display, spatial visualization ability, and  
learning force and motion concepts. Journal of  Science Education and Technology, 15, 
113-134. 

Linn, M. C., Layman, J., & Nachmias, R. (1987). Cognitive consequences of   
microcomputer-based laboratories: Graphing skills development. Contemporary 
Educational Psychology, 12, 244–253. 

Mazard, A., Tzourio-Mazoyer, N., Crivello, F., Mazoyer, B., Mellet, E. (2004). A PET  
meta-analysis of  object and spatial mental imagery. European Journal of  Cognitive 
Psychology, 16, 673-695. 

Mellet, E., Petit, L., Mazoyer, B., Denis, M., & Tzourio, N. (1998). Reopening the mental imagery  
debate: Lessons from functional anatomy. NeuroImage, 8, 129-139. 

Mokros, J., & Tinker, R. (1987). The impact of  microcomputer-based labs on children's ability to  
interpret graphs. Journal of  Research in Science Teaching, 24, 369–383. 



BRAIN 
 

56

Motes, M. A., Kozhevnikov, M. (2006).  Differences in BOLD signals between object  
and spatial visualizers when encoding and imagining stimuli.  Manuscript in preparation. 

Presmeg, N. C. (1986). Visualization and mathematical giftedness. Educational Studies in  
Mathematics, 17, 297–311. 

Roland, P. E. & Gulyas, B. (1994). Visual imagery and visual representations. Trends in  
Neurosciences, 17, 281-287. 

Thornton, R., & Sokoloff, D. (1990). Learning motion concepts using real-time  
micro-computer-based laboratory tools. American Journal of  Physics, 58, 858–867. 

Uhl, F., Goldenberg, G., Lang, W., & Lindinger, G. (1990). Cerebral correlates of  imagining  
colours, faces and a map - II. Negative cortical DC potentials. Neuropsychologia, 28, 81-93. 

Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A.  
Goodale, and R. J. W. Mansfield (Eds.), Analysis of  visual behavior. Cambridge, MA: MIT 
Press. 

White, B. V. (1993). ThinkerTools: Causal models, conceptual change, and science education.  
Cognition and Instruction, 18, 1–100.



BRAIN 
 

57

KKEEYYNNOOTTEE  SSPPEEEECCHH  IIVV  ––  PPOOWWEERRPPOOIINNTT 

The text of  the PowerPoint has been printed as received; no editing has been done. 
 
 

Object vs. Spatial Mental 
Imagery: 

The Neural Mechanisms and 
Implications for Science 

Education

Maria Kozhevnikov
National Science Foundation

Science of Learning Centers Program

 
 

Educational “neuromyths”

1. Children could be identified as either “left-brained”
or “right-brained”. Left brain dominates in processing 
language, logic, mathematical formulas, whereas 
right brain dominates visual processing.

2. Children’s cognitive style could be identified as 
either visual and verbal. Visualizers prefer to process 
information by imagery means, while verbalizers by 
verbal/analytical means. Curriculum materials should 
match individuals’ cognitive style.

 
 

Neuroscience data: Dissociation Between 
Object vs. Spatial Visual Systems:

(Jonides & Smith, 1997; Kosslyn & Koenig, 1992; Underleiger and Mishkin, 1982)
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Evidence from brain lesion studies: the same 
dissociation in imagery (Farah et. al., 1988)
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Neural correlates of visual imagery
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Dissociation between object and spatial 
imagery exists in individual differences in 
imagery (Kozhevnikov, Kosslyn, & Shephard, 2005)
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at constructing 
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images of 
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imagining spatial 
transformations
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Experimental Study

162 psychology undergraduates were given a 
battery of spatial and object imagery ability tests: 

Are the figures in each pair the same or different?

Mental Rotation Spatial Imagery Task

 
 

Object Imagery Task 

 
 

Results: Two Types of Visualizers

Visualizers show bimodal distribution on imagery 
tasks, that is, most of the visualizers are either of 
high spatial imagery or high object imagery ability
with almost no visualizers with average imagery 
abilities.

Most verbalizers show average performance on 
object and spatial imagery tasks.
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Results: Two Different Types of Visualizers
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New Approach to Cognitive Style
(Kozhevnikov, Kosslyn, & Shepard, 2005)

Spatial
Imagers

Visualizers

Verbalizers

Types of Learners

Object
Imagers

New instruments to assess students’ visual cognitive style 
and differentiate between three types of learners were 
designed and validated (Blajenkova, Kozhevnikov, & Motes 
2006: Applied Cognitive Psychology). 

 
 

Neural underpinnings of individual 
differences in imagery

Neuroimaging data provided evidence that the two 
groups of imagers differ qualitatively in their visual 
cognitive style:

Seven spatial imagers and seven object imagers were 
administered Embedded Picture Test, while scanned on 
fMRI. Our predictions were that the most significant 
differences between the two groups of participants in the 
inferior temporal versus posterior parietal lobes (e.g., 
ventral vs. dorsal pathways) (Motes et al., 2006)
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Embedded Picture Task

Global (holistic) 
properties: Symmetry

Local properties: 
T-junction

 
 

Figure 1.  Exam ples of global and local properties (A &  B, 
respectively) and the trial tim eline (C). 

Figure 1. Examples of global (A) and local (B) properties and the trial timeline (C).
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fMRI studies: Conclusions

The data are consistent with the idea that 
individual differences in object versus spatial 
representations are related to the differential 
use of regions in the dorsal and ventral visual 
processing streams. Hemispheric differences 
also have significance.

We suggest that the greater parietal activations 
for the object imagers and the greater left 
occipito-temporal activations for the spatial 
imagers are due to the groups trying to 
compensate for processing “weaknesses.”

 
 

Visual artists & designers are better at
object imagery tests

Architects? Good in both?

Scientists & engineers are better at
spatial imagery tests

Linguists & philosophers use
less imagery

Ecological validity of visual cognitive style: 
Imagery within various professional 

domains

 
 

Participants

Linguists and 
philosophers

N = 23
Architects

N = 12

Scientists (physicists 
and engineers)

N = 24

Visual Artists, 
designers 
N = 19
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Results: Object Imagery Tasks
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Results: Spatial Imagery Tasks
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It will not be useful to debate whether visualizers are 
more successful in learning than verbalizers or 
whether imagery in general enhances or impairs 
performance on cognitive tasks. 

In order to make optimal use of the strengths of 
visual-spatial processing, we need to explore the 
relationships between different types of imagery and 
performance in various domains.

Ecological validity of visual style: 
Conclusions
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The goal of the next studies was to compare 
how object imagers, spatial imagers, and 
verbalizers, as well as members of different 
professions process and interpret abstract 
visual information (Hegarty & Kozhevnikov, 
1999; Kozhevnikov, Hegarty & Mayer, 2002, 
Blajenkova et al., 2006) 

Object and spatial imagery in 
science problem solving and arts

 
 

Participants 
The participants were: 25 psychology undergraduates; 
every student was assigned to one of the four groups:
6 object imagers
7 spatial imagers
6 verbalizers of low spatial ability
6 verbalizers of high spatial ability

Plus 66 members of different professions from the previous 
study (visual artists, linguists and philosophers, and 
scientists)

Method
The materials included three graph problems depicting an 
object motion. Participants were asked to visualize and 
then write down a story that describes a situation depicted 
on the graph.

Imagery strategies in science 
problem solving
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time

Here is a graph of an object’s motion.
Describe a real situation depicted on the graph.

Students’ answers were categorized into three categories 
(Interjudge reliability - 0.89) :

Categorization of students’ answers

•literal (graph-as-picture): “a ball rolled along a level 
surface, then down a ramp onto another level surface”
• no image or irrelevant: “an object is moving constantly 
in a circle”, “a toy plane is gliding into the air”
• schematic: “an object is at rest on the first interval and 
moves at the second interval and stops again”

 

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________ 

 

 

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________ 

 

 

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________ 



BRAIN 
 

65

KKEEYYNNOOTTEE  SSPPEEEECCHH  IIVV  ––  PPOOWWEERRPPOOIINNTT 

The text of  the PowerPoint has been printed as received; no editing has been done. 
 
 

Results 

literal
irrelevant
schematic

χ2(1) = 13.00 
p < 0.0001
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Graph interpretation by scientists 
and engineers

 
 

Graph interpretation
by visual artists
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Graph interpretation by linguists 
and philosophers

 
 

Berryhill “Breakthrough”

Imagery in abstract visual art interpretation

 
 

Visual artists

What images this picture bring about to your mind?  
What is drawn here? What feelings does this
picture evoke?
Extreme tension; catastrophe, people, explosion, fire; 
breakthrough; eruption; war, explosion; burst through, 
anxiety and tension; crash and liberation; death 
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Scientists and engineers

What images this picture bring about to your mind?  
What is drawn here?

Abstract painting; eye-catching; different colors: blue, 
black, red, yellow, white; sharp edges in red; crystals of 
ice; window to the sky; pieces of ice (glass)

What feelings does this
picture evoke?

Nothing; positive; 
Strange; everything 
happens together

 
 

Linguists and Philosophers

What images this picture bring about to your mind?  
What is drawn here?

Nothing; diversity;  pieces of cloths thrown together with 
some picture of a cloudy sky; don’t see anything; no 
image.

What feelings does this
picture evoke?

Nothing; neutral; 
no feelings; confusion

 
 

Interpretations of abstract visual 
representations by artists and scientists

Graph interpretation Abstract art interpretation

χ2(2) = 11.21; p < 0.01 χ2(2) = 11.64; p < 0.01
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Different approaches in interpretation of 
visual representations

•The distinction between object and spatial imagery could not be reduced to 
the difference between concrete versus abstract visual representations.

•Scientists significantly more often interpret abstract art literally (concrete 
objects), while visual artists interpret abstract art as conveying abstract 
ideas and complex emotions. Visual artists significantly more often interpret 
graphs literally (graph-as-picture), while scientists more often interpret 
graphs as abstract schematic representations.

Concrete 
interpretations

Abstract 
interpretations

visual artists & 
designers

Abstract 
interpretations

Concrete 
interpretations

scientists & engineers

Spatial schematic imagery: 
Graphs

Object (pictorial) 
imagery:
Artistic works

Type of visual   
information

Profession

Concrete 
interpretations

Abstract 
interpretations

visual artists & 
designers

Abstract 
interpretations

Concrete 
interpretations

scientists & engineers

Spatial schematic imagery: 
Graphs

Object (pictorial) 
imagery:
Artistic works

Type of visual   
information

Profession
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We found that a large group of college students, 
object imagers, had serious difficulty interpreting 
graphs as abstract schematic representations and 
instead interpreted them as pictorial representations. 

These students will clearly have difficulty solving 
science and math problems that involve processing 
or creating abstract, schematic, spatial 
representations (e.g., graphs).

How might we best teach these students to solve 
such science and mathematical problems? 

 
 

Implication of Neuroscience to Science 
Education

Design Learning Technologies
MBLs and Immersive Virtual Realities

•One possible approach is to teach object imagers 
represent and solve science and mathematics problems 
by using verbal-analytical strategies rather than spatial 
strategies requiring spatial imagery abilities that they 
do not have. 

•Another possible way of teaching object imagers is to 
give them explicit instruction on how visual, schematic, 
and verbal representations relate to each other. 
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MBLs (in collaboration with Center for Science 
and Math Teaching, Tufts University)

 
 

Research Design

Participants: 84 undergraduates from Tufts University 
who studied mechanics based on MBL curriculum and 
40 undergraduates who did not study any science 
courses (control group).

Materials: Spatial visualization test (paper-folding) 
(pre and post) and physics conceptual test including 12 
kinematics graphs (pre and post).

 
 

Post-test

Schematic 
interpretation

Pre-test
64 11

9 75

Other 
interpretation

Concrete/literal 
interpretation

0

9

Eliminating concrete graph 
misinterpretations with the help of MBL 

technology

Kozhevnikov & Thornton (2006), JSET
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Increase in Spatial Ability
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Immersive Virtual Realities

1) Investigating how various aspects of virtual 
reality (multisensory immersion, 3-d 
representations, shifting among different frame 
of references) support complex conceptual 
learning.

2) Examining the interaction between different 
virtual reality aspects and other factors such as 
a learner individual characteristics, domain-
specific knowledge and interaction experiences

3) Creating educational software with focus on 
visualization processes

 
 

Virtual Reality Lab
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Conclusions

Interactive computer simulations that include 
verbal representations, schematic graphics, and 
pictorial representations, might be effective for 
object imagers . 

Instruction should be aimed explicitly at teaching 
students to construct and interpret different types 
of representations and to translate between 
different representations of the same phenomenon.

Thus, the utility of a particular type of imagery 
depends in part on the task; it is not likely that any 
type of imagery is necessarily or universally 
superior to any other type. 
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More Conclusions

The results highlight the need for research that 
characterizes which type of imagery facilitates 
learning and reasoning in specific domains. 

We propose that instructional strategies not only 
be designed to teach students to construct and 
interpret different types of visual-spatial 
representations but that different students can be 
taught strategies for translating material to 
representations that are compatible with their own 
preferred cognitive style.

 
 

Future research: 

How education research can inform neuroscience? 
What kind of educational questions are important to 
be tested in neuroscience labs?

Imagery training…

How does imagery practice change the brain activation 
over time as the participants receive training, and 
which changes predict improvement in solving spatial 
versus object imagery tasks?
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Abstract 
Developing a Science Teacher Professional Development Research Agenda  

James P. Barufaldi, Ph.D. 
 

Center for Science and Mathematics Education 

The University of  Texas at Austin 

Austin, Texas 

jamesb@mail.utexas.edu 

 
 

The purpose of  the paper is to discuss characteristics of  effective professional development 
programs and the need for research to document the effectiveness of  such programs. Providers 
of  professional development must carefully plan and promote their research agendas. 
Implementing research studies designed to document the effectiveness of  their programs related 
to student learning in science is quite challenging.  Many factors contribute to student learning 
such as socio-economic status, limited English proficiency and minority status of  students, 
per-pupil spending, pupil teacher ratios, class sizes, and teacher quality. As noted by many 
researchers, teacher quality is highly correlated with student learning (Darling-Hammond; 1999), 
(Dufee & Aikenhead, 1992) and (Dreil, Beijard & Verloop, 2001). Since it appears that teacher 
quality is one of  the most determinant factors for student learning, one must focus on ways to 
enrich teacher quality.  Studies concerned with improving teacher quality must pay special 
attention to the kind of  professional development that is provided to these teachers. Moreover, 
if  the ultimate goal of  improving teacher quality is to consequentially improve student learning, 
it is imperative to determine variables or characteristics of  professional development programs 
that may impact student learning (Tinoca, 2005).  
 
The paper will briefly discuss a series of  strategies and activities suggested by Loucks-Horsley et 
al. (1998) that are helpful in conceptualizing a model professional development program. An 
overview of  one such model professional development program, the Texas Regional 
Collaboratives for Excellence in Science Teaching (TRC), will be described (Barufaldi & 
Reinhartz, 2001). The unique components of  the TRC will be compared with those proposed by 
Loucks-Horsley, Guskey (1986), and others.  A theoretical framework for professional 
development will also be proposed. The TRC will be discussed in terms of  the impact it has 
made on science teacher’s learning, attitudes and changes in the ecology of  the classroom. The 
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relationship between characteristics of  professional development programs and student 
achievement in science will be discussed. In addition, the paper will provide a review of  studies 
that have shown a positive relationship between characteristics of  professional development 
programs and student achievement. Research studies focusing on professional development will 
be presented that have demonstrated no impact, minimal impact and considerable impact on 
student achievement in science. Finally, the paper will discuss challenges in documenting the 
effectiveness of  professional development programs and provide an update of  research 
conducted by the TRC staff. 
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Developing a Science Teacher 
Professional Development Research 

Agenda
James P. Barufaldi, Ph.D.

Center for Science and Mathematics Education 
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Overview of the PresentationOverview of the Presentation

Purpose
Conceptualizing a model professional 
development program
Texas Regional Collaboratives for Excellence
Impact on teachers
Factors contributing to student learning
Relationship between characteristics of 
professional development programs and 
student achievement in science
Challenges in documenting the effectiveness 
of professional development programs

 
 

PurposePurpose

The purpose of the paper is to discuss 
characteristics of effective professional 
development programs and the need for 
research to document the effectiveness 
of such programs.
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Factors contributing to student Factors contributing to student 
learninglearning

Socio-economic status
Limited English proficiency and minority 
status of students
Per-pupil spending
Pupil teacher ratios
Class sizes
Teacher quality (Darling-Hammond, 1999)

 
 

Teacher QualityTeacher Quality

How does one enhance/develop 
teacher quality through professional 
development?
How does teacher quality contribute to 
student learning?

 
 

Components of a Professional Components of a Professional 
Development SystemDevelopment System

PD 
Program Teacher

Facilitator

Social
Political

Economic

Adapted from Schwab, 1978, Borko, 2004
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Components of a Dynamic Components of a Dynamic 
Professional Development SystemProfessional Development System

PD 
Program Teacher

Facilitator

Social
Political

Economic

Adapted from Schwab, 1978, Borko, 2004

Student

 
 

A Logic Model for a Dynamic A Logic Model for a Dynamic 
Professional Development SystemProfessional Development System

Barufaldi, 2006

PD Program
(ideal program / intervention)

Facilitator
(translated program)

Teacher
(interpreted program)

Students
(experienced program)

Social

Political

Eco
nomic

 
 

The Professional Development The Professional Development 
ComponentComponent

Barufaldi, 2006

PD Program
(ideal program / intervention)

Texas Regional Collaboratives for Excellence in Science 
and Mathematics Teaching

Social

Political

Eco
nomic

35 Science Sites

20 Mathematics Sites

Content Focused/Guided Inquiry

Technology

Developed by Design Specialists
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The Facilitator ComponentThe Facilitator Component

Barufaldi, 2006

PD Program
(ideal program / intervention)

Facilitator
(translated program)Social

Political
Eco

nomic

Each Instructional Team includes master teachers, science and  
mathematics educators, mathematicians, scientists, and 

curriculum specialists.

Professional Development Academies

 
 

The Teacher ComponentThe Teacher Component

Barufaldi, 2006

PD Program
(ideal program / intervention)

Facilitator
(translated program)

Teacher
(interpreted program)

Social

Political

Eco
nomic

90 to 105 contact hours per year

Teacher gain scores in content/skills

Changes in the ecology of the classroom

 
 

The Student ComponentThe Student Component

Barufaldi, 2006

PD Program
(ideal program / intervention)

Facilitator
(translated program)

Teacher
(interpreted program)

Students
(experienced program)

Social

Political

Eco
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Improvement in achievement and shifts in attitude

 

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________ 

 

 

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________ 

 

 

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________ 



BRAIN 
 

79

KKEEYYNNOOTTEE  SSPPEEEECCHH  VV  ––  PPOOWWEERRPPOOIINNTT  

The text of  the PowerPoint has been printed as received; no editing has been done. 
 
 

Why is the Texas Regional Why is the Texas Regional 
CollaborativesCollaboratives for Excellence in for Excellence in 

Science and Mathematics Teaching Science and Mathematics Teaching 
Program Successful?Program Successful?

 
 

Comparison of Comparison of LoucksLoucks--Horsley et al. Horsley et al. 
(1998) Principles to the TRC(1998) Principles to the TRC

Loucks-Horsley Criteria
Sustained contact 
Defined image
Teachers build 
knowledge and skills
Models for teachers to 
use with students
Builds a learning 
community
Leadership roles
Links to the system
Continuous self 
assessment

TRC Criteria
105 contact hours/yr
Six systemic threads
Professional development 
academies
Training models best 
practice
Network with teachers
Science Teacher Mentors
Teachers as professionals
Access to most current 
information
Yearly pre, post, and 
formative assessments

 
 

Collaboration is the SynergyCollaboration is the Synergy

PD 
Program Teacher

Facilitator

Social
Political

Economic

Adapted from Schwab, 1978, Borko, 2004

Student
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Texas Regional Texas Regional CollaborativesCollaboratives for for 
Excellence in Science and Mathematics Excellence in Science and Mathematics 

TeachingTeaching

Shared vision – to improve the 
teaching and learning of science 
and mathematics by providing 
teachers of Texas with sustained,  
exemplary opportunities to grow 
professionally.

 
 

The Dynamics of CollaborationThe Dynamics of Collaboration

Regional 
Collaboratives

Center

Department

College of Education

The University of Texas at Austin

Shared vision

Support

 
 

Relationship between Characteristics of Relationship between Characteristics of 
Professional Development Programs and Professional Development Programs and 

Student Achievement in ScienceStudent Achievement in Science

No impact on student learning
Action research
Study groups

Tinoca, 2005
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Minimal Impact on Student LearningMinimal Impact on Student Learning
Inquiry
Case discussions
Coaching and mentoring
Partnerships with scientists

Tinoca, 2005

 
 

Considerable Impact on Student LearningConsiderable Impact on Student Learning

Curriculum
Replacement
Implementation
Development of partnerships/collaboration 
(Barufaldi & Reinhartz, 2001)

Development of team leaders as professional 
developers (Fletcher & Barufaldi, 2001; Hobbs & Barufaldi, 
2006)

Sustained over time (Tinoca & Barufaldi, 2005; Meyer & 
Barufaldi, 2004)

Tinoca, 2005

 
 

Sustained Over TimeSustained Over Time

Factors impacting science teacher 
renewal/retention

Creating professional environments for teachers
Providing classroom lessons and materials
Providing current information on educational issues
Providing networking opportunities
Building confidence to teach science
Providing leadership opportunities

Meyer & Barufaldi, 2003
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Providing Leadership OpportunitiesProviding Leadership Opportunities

Empowerment
What are those impacting events that 
contribute to teachers’ overall sense of 
empowerment?
What professional growth experiences do 
teacher recall as having a positive and pivotal 
impact on their empowerment?
Is there a pattern to the experiences that is 
common to all empowered career science 
teachers?

Hobbs & Barufaldi, 2006

 
 

Challenges in  Documenting the Challenges in  Documenting the 
Effectiveness of Professional Effectiveness of Professional 

Development ProgramsDevelopment Programs

Theoretical Framework
The Intervention
Experimental/Control Group Design
Variables
Teacher Quality Indicators
Professional Development across 
Multiple Sites

 
 

Professional Development Across Professional Development Across 
Multiple SitesMultiple Sites

Borko (2005) states longitudinal studies in 
professional development that include 

multiple sites with multiple facilitators are 
nonexistent. 

The TRC model is one example of this 
research agenda.
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KKEEYYNNOOTTEE  SSPPEEEECCHH  VV  ––  PPOOWWEERRPPOOIINNTT  

The text of  the PowerPoint has been printed as received; no editing has been done. 
 
 

“Ideal Professional Development”
↓

Facilitators -Translated
↓

Teachers - Interpreted
↓

Students - Experienced

Developing an Intellectual Agenda for Developing an Intellectual Agenda for 
Research of Professional DevelopmentResearch of Professional Development

 
 

If developers are serious about promoting 
student learning in science through 
professional development then the design of 
the program must be chosen with great care.

Scholars of professional development agree 
that in order for exemplary professional 
development to occur, the program must be 
designed with the learning outcomes clearly 
defined (Gusky, 2005,  Loucks-Horsley & Stiles, 2003).

Concluding ThoughtsConcluding Thoughts

 
 

THANK YOU
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  IINNVVIITTEEDD  SSPPEEAAKKEERRSS 

 
 Janice D. Gobert 

Senior Research Scientist, Concord Consortium, Concord MA 
North American Editor, International Journal of  Science Education 
http://mtv.concord.org/publications/janice_gobert_cv.pdf   
 
Janice Gobert is a Research Scientist at the Concord Consortium. She is also a Research Associate at 

Harvard University in the Department of  Learning and Teaching, and was recently appointed the 

North American Editor of  the International Journal of  Science Education. Her Ph.D. is in Applied 

Cognitive Science from the University of  Toronto. Her primary interests are in visual models in 

science and how these support reasoning and inference-making. She is also interested in how 

technology can support students' inquiry with models. Janice is the Director of  the Making 

Thinking Visible project, a collaborative effort with Marcia Linn at UC-Berkeley, and the Director 

of  the Models of  Plate Tectonics Project, both funded by the National Science Foundation. Janice 

is also Research Director of  the Modeling Across the Curriculum project. 

 
 Michael J. Jacobson 

Associate Professor, Learning Sciences and Technology Academic Group; Senior Research 
Scientist, Learning Sciences Lab 
National Institute of  Education, Nanyang Technological University, Singapore 
http://mjjacobson.net/  
 
Michael J. Jacobson, Ph.D., is an Associate Professor with the Learning Sciences and Technology 

Academic Group at the National Institute of  Education (NIE), Nanyang Technological University 

in Singapore. He is also a Co-Principal Scientist at the NIE Learning Sciences Lab where he heads 

up the Cognition and Beliefs About Learning research strand. Formerly he was the Senior Associate 

Director and an Associate Professor at the Korea University Center for Teaching and Learning in 

Seoul, Korea. Dr. Jacobson has also held faculty and research positions at the University of  Illinois 

at Urbana-Champaign, Vanderbilt University, and The University of  Georgia, and he has been 

involved with organizational and international consulting activities. His research has focused on the 

design of  learning technologies to foster deep conceptual understanding, conceptual change, and 

knowledge transfer in challenging conceptual domains. Most recently, his work has explored 

cognitive and learning issues related to the design of  learning technologies to help students 

understand new scientific perspectives emerging from the study of  complex and dynamical systems. 

Dr. Jacobson received his Ph.D. in educational technology with a secondary emphasis in cognitive 

science from the University of  Illinois at Urbana-Champaign in 1991. 
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IINNVVIITTEEDD  SSPPEEAAKKEERRSS 

 
 Barbara K. Hofer 

Associate Professor, Psychology Department 
Middlebury College, Middlebury VT 
http://www.middlebury.edu/academics/ump/majors/psych/hours/hofer/  
 
Dr. Barbara K. Hofer is currently associate professor of  psychology at Middlebury College in 

Middlebury, Vermont. She is an expert on epistemic beliefs and development, and also is interested 

in motivation, self-regulation, and culture and cognition. Her research on epistemic understanding 

includes both quantitative and qualitative approaches, and recent studies include investigations of  

epistemic metacognition during online searching in science learning, students’ epistemic beliefs 

about evolution, cross-cultural studies of  knowledge and knowing, disciplinary differences in 

epistemic beliefs, and classroom level research on teacher and student beliefs. She was awarded the 

Research Review Award from the American Educational Research Association for her review of  

epistemological research with Paul Pintrich, and also received the American Psychological 

Association Early Career Teaching Award. She serves on the editorial boards of  Educational 

Psychologist and Contemporary Educational Psychology and as an ad hoc reviewer for over twenty 

journals and is the secretary of  the Division of  Educational Psychology of  APA. Dr. Hofer has 

served as a consultant and on advisory boards for the U.S. National Science Foundation and the 

Social Sciences and Humanities Research Council of  Canada and currently is engaged in assisting 

with the NSF-funded Math and Science Partnership project at the University of  Michigan, where 

she received her Ph.D. in 1998. During a recent sabbatical she was a Faculty Fellow at Doshisha 

University in Kyoto, Japan. 

 
 Maria Kozhevnikov 

Associate Professor, Psychology Department 
George Mason University 
NSF Program Director for Science of  Learning Centers 
http://psychology.rutgers.edu/~maria/  
 
Dr. Kozhevnikov is interested in neural mechanisms of  visual/spatial imagery as well as in 
individual differences in basic information processing capacities (e.g., the ability to generate, 
inspect, or transform visual/spatial images). In addition, Dr. Kozhevnikov is interested in examining 

how these individual differences affect more complex activities, such as spatial navigation, learning 

and problem solving in mathematics and sciences as well as in exploring the ways to train 

visual/spatial imagery skills and design learning technologies that can accommodate individual 

differences and learning styles. 
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IINNVVIITTEEDD  SSPPEEAAKKEERRSS 

 
 James P. Barufaldi 

Ruben E. Hinojosa Regents Professor, Department of  Curriculum and Instruction 
College of  Education  
University of  Texas at Austin, Austin TX 
http://www.utexas.edu/education/facultyDetails.php?ID_PK=68D67753-07C6-639B-827
F218D1097F15F  
 
Dr. James P. Barufaldi is the Ruben E. Hinojosa Regents Professor and serves as Director of  the 

Center for Science and Mathematics Education at The University of  Texas at Austin. He also serves 

as Principal Investigator of  the Texas Regional Collaboratives for Excellence in Science Teaching. In 

2003 Barufaldi was selected as a member of  the Academy of  Distinguished Teachers at The 

University. He teaches undergraduate and graduate courses in science education. Barufaldi's special 

areas of  interests are curriculum design, instructional strategies, implementation, evaluation, and 

science teacher education. He is currently investigating the process of  building successful 

collaboratives in the science education community and variables, which may contribute to high 

intensity, sustained collaboration. 
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LLIISSTT  OOFF  CCOONNFFEERREENNCCEE  PPAARRTTIICCIIPPAANNTTSS  

 
 

林碧珍 / Pi-Jen Lin 

Professor 
Dept. of  Applied Mathematics, National Hsinchu University of  Education 

佘曉清 / Hsiao-Ching She 

Professor 
Dept. of  Education, National Chiao Tung University 

襲充文 / Gary C.-W. Shyi 

Professor 
Dept. of  Psychology, National Chung Cheng University 

于富雲 / Fu-Yun Yu 

Professor 
National Cheng Kung University 

張文華 / Wen-Hua Chang 

Associate Professor 
Dept. of  Life Sciences, National Taiwan Normal University 

劉嘉茹 / Chia-Ju Liu 

Associate Professor 
Dept. of  Science Education, National Kaohsiung Normal University 

蔡文煥 / Wen-Huan Tsai 

Associate Professor 
National Hsinchu University of  Education 

楊坤原 / Kun-Yuan Yang 

Associate Professor 
Dept. of  Education & Center for Teacher Education, Chung Yuan Christian University 

楊文金 / Wen-Gin Yang 

Associate Professor 
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Dept. of  Science Education, National Taiwan Normal University 

徐式寬 / Shihkuan Hsu 

Assistant Professor 
Center for Teacher Education, National Taiwan University 

 

LLIISSTT  OOFF  CCOONNFFEERREENNCCEE  PPAARRTTIICCIIPPAANNTTSS  

 

 

劉湘瑤 / Shiang-Yao Liu 

Assistant Professor 
National Kaohsiung Normal University 

溫媺純 / Meichun Lydia Wen 

Assistant Professor 
Dept. of  Science Education, National Changhua University of  Education 

馮瑞 / Rae Feng 

Postdoctoral Researcher & Assistant Professor 
Dept. of  Education, National Chiao Tung University 

郭碧祝 / Pi-Chu Kuo 

Postdoctoral Researcher 
National Chiao Tung University 

張月霞 / Yueh-hsia Chang 

Postdoctoral Researcher 
Dept. Earth Sciences, National Taiwan Normal University 

李旻憲 / Min-Hsien Lee 

Doctoral Student 
Dept. of  Earth Sciences, National Taiwan Normal University 
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吳穎沺 / Ying-Tien Wu 

Doctoral Student 
Dept. of  Earth Sciences, National Taiwan Normal University 

葉庭光 / Ting-Kuang Yeh 

Master's Student 
Dept. of  Earth Sciences, National Taiwan Normal University 

李安瑜 / An Yu Lee 

Student 
National Taiwan University 

蔡芳宜 / Fang Yi Tsai 

Student 
Dept. of  Sociology, National Taiwan University 

LLIISSTT  OOFF  CCOONNFFEERREENNCCEE  PPAARRTTIICCIIPPAANNTTSS  

 

 

朱紓葶 / Chu Shu-Ting 

Student 
National Taiwan University 
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TTHHEE  BBRRAAIINN  OORRGGAANNIIZZIINNGG  CCOOMMMMIITTTTEEEE  

 
 

 張俊彥 博士 

Chun-Yen Chang, Ph.D. 

Professor & Chair 

Department of  Earth Sciences, National Taiwan Normal University  

Tel: 886-2- 29354393 

Email: changcy@ntnu.edu.tw 

Web: http://ese.geos.ntnu.edu.tw/~chunyen 

 

 

 蔡今中 博士 

Chin-Chung Tsai, Ph.D. 

Professor 

Institute of  Education, National Chiao Tung University,  

 

 

 楊芳瑩 博士 

Fang-Ying Yang, Ph.D. 

Associate Professor 

Department of  Earth Sciences, National Taiwan Normal University  
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LLIISSTT  OOFF  TTHHEE  BBRRAAIINN  WWOORRKKIINNGG  TTEEAAMM  

The list is in alphabetical order 
 

Research Assistants 

 

趙愛茵 / Ai-Yin (Laura) Chau 

 

曾煥格 / Frank Tseng 

 

曾如詩 / Ju-Shih (Jenny) Tseng 

 

王淑文 / Shu-Wen (Sophia) Wang 

 
 

Graduate Students 

 

黃俊傑 / Chun-Chieh Huang 

 

黃晟庭 / Sheng-Ting Huang 

 

洪逸文 / Yi-Wen Hung 

 

李旻憲 / Min-Hsien Lee 

 

李岱螢 / Tai-Ying Lee 
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林銘照 / Ming-Chao Lin 

 

呂志峰 / Chih-Feng Lu 

 

吳皇慶 / Huang-Ching Wu 

 

吳穎沺 / Ying-Tien Wu 

 

葉庭光 / Ting-Kuang Yeh 
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