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1 Introduction

Through out this thesis, (R, m, k) is a Noetherian local ring with maximal ideal m. Let

A be an R-module and define
Im(A) ={y € A| m"y = 0 for some k > 0}.

It is not difficult to check that 'y, (—) is a left exact additive functor on the category of
R-modules. The right derived functor associate to I'yy(—), denoted by HJ (—), is called
the local cohomology functor. In other words, take an injective resolution Z of A and
delete A, then we get a cochain complex 'y, (Z) by applying the functor I'y, to every term
in Z. Then H} (A) is the nth cohomology associate to I'y(Z), i.e.,H] (A) = H"(I'm(Z)).

Let 21, 2o, ..., 2, be a sequence of elements of R. The Cech complex with respect to
the sequence x1, o, ..., x, is a cochain complex
0 dO 1 dl dnfl
C.0—-C"—(C" —-+-—C"—0

where C' = @, sy i< Rei aiy-a;, a0d C° = R, and the differentiation d' : C* —

C**1 is given on the component Ry, ..z, —-R to be

Li1Tio Tt

(=1)*7' - nat : Rypoa,, = Ry ey, ey A {in,e vteh =Lty - Jsy -y et}

0 otherwise .

Note that nat : inl...xit — (R%'“fcit)xjs is the natural R-module homomorphism defined

l
r ZC]»ST’

b — .
Y Gy i)l (@iy iy 2j5)!

It is well-known that if the ideal (z1,s,...,2Z,) is m-primary, then we have
H! (A) 2 H(A®C)

for all R-modules A and ¢ > 0. In this thesis, we will give a proof with complete details
for this isomorphism. In order to prove this isomorphism, we consider additive functors
on the category of R-modules. In Chapter 2, we introduce connected pairs, connected
sequences, and the definition of being universal for a connected sequence. We will also
show that if two universal connected sequences {T™, E"},~o and {T"", E™ },.>¢ have the

same initial 70 = 7", then T"(A) 2 T (A) for all R-module A and n > 0.
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In Chapter 3, we first prove that {HJ:(—), E™},>0 is a universal connected sequence
with initial HY (=) = Tn(—). We will also show that {H"(— ® C), E"},>0 is a universal
connected sequence with initial H%(— ® C) = I'y(—). In order to show H"(— ® C) is
universal, we make two important observations: any nonzero injective R-module is a
direct sum of indecomposable injective R-modules, and an indecomposable injective R-
module is isomorphism to an injective hull of R/p for some p € Spec(R). Finally we use
what we prove in Chapter 2 to see that H(A) = H"(A ® C) for all R-module A and

n > 0.



2 Connected Pairs and Connected Sequences

2.1 Preliminaries

Before introducing connected pairs and connected sequences, we consider the category £
whose objects are short exact sequences of R-modules £ : 0 — A — B — C' — 0 and
whose morphisms are triple R-module homomorphisms («, 3,7) : B — E' such that the
diagram
E:0 A B C 0
bk
E':0 A B’ c’ 0

is commutative, where £ :0 = A — B -C —-0and E' :0 - A — B — C' — 0 are

two objects, i.e., two short exact sequences of R-modules.

Definition 2.1.1. Let F: 0 - A—- B —-C —-0and ' :0 - A — B — C — 0 be
two short ezact sequences. We say that E is congruent to E' if there is a morphism
(14,0,1¢) : E — E'" in &, i.e., there exists an R-module homomorphism § : B — B’ such

that the diagram

18 commutative.
Remark 2.1.2.

(1) In Definition 2.1.1, because (14,9, 1¢) : E — E’ is a morphism in the category &€, §
15 an 1somorphism by the Five Lemma. Thus there exists an R-module isomorphism
671 B'— B such that 667 = 1p and 676 = 15. Then (14,67 ',1¢) : B/ — E is

a morphism in &, i.e.,the diagram

E:0 A B’ C 0

s

E:0 A B C 0

is commutative. Hence if E is congruent to E, then E' is congruent to E.
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(2) Let E : 0 — A% B 5 C — 0 be a split short exact sequence. Then there
exists an R-module homomorphism f : B — A such that fo = 14. Suppose
E:0—AZ B T C—0isashort exact sequence that is congruent to E. Then

there exists an R-module homomorphism § : B — B’ such that the diagram

E:0 A—2-B—1-C 0

b I

E 00— A—2-B T . C— 0

is commutative. By (1), we have an R-module homomorphism ' : B — B such
that 561 = 1/, 6719 = 15 and the diagram

/ /

E:0 A—2-B'1sC 0

s

E:0 A—2-B"s(C 0

is commutative. We take f': B — A to be the composition of the homomorphisms
BELBL A e, f'= f6V. Therefore, f'o’ = f6~'o" = fo = 14. Hence if E

is split and E' is congruent to E, then E' is also split.

Lemma 2.1.3. Let E : 0 — A5 B 5 C — 0 be a short exact sequence. Suppose
a : A — A is an R-module homomorphism. Then there is a short exact sequence
E:0— A% B 70 =0 and an R-module homomorphism (3 : B — B’ such that the
diagram
E:0 A—"—-B—=C 0
Pl e
B 0—sA-ToB T (0

is commutative, i.e., Na, 3,1.) : E — E' is a morphism in £. Moreover, the pair (\, E)

is unique up to a congruence of F'.

Proof. We want to find an R-module B’ and R-module homomorphisms ¢’, 7/, § such

that B/ : 0 — A’ % B' 75 C' — 0 is exact and the diagram

E:0 A—2 B Ts(C 0
l“ lﬁ l (1)
E 00— A 2B T .00




is commutative. Take B' = (A’ @ B)/N, where N = {(—a(a),o(a)) € A ® B |a € A}.
Let ¢’ be the composition of the natural homomorphisms A’ — A’& B — (A’ @ B)/N =
B ie., o : A — B'is the homomorphism defined by ¢’(a’) = (¢/,0) + N for all ' € A’;
let 5 be the composition of the natural homomorphisms B — A& B — A'® B/N = B/,
i.e., f: B — B'isthe R-module homomorphism defined by (b) = (0,b)+N forall b € B.
Also, because N is contained in the kernel of the composite A’@B — B = C, we have an
induced R-module homomorphism 7’ : (A'® B)/N = B’ — C with 7/((¢/,b) + N) = 7(b)
for all (a/,b) + N € B'.
We first show that £’ is exact. Note that

e because o is one-to-one, it is not difficult to see that ¢’ is also one-to-one;
e because T is onto, it is not difficult to check that 7’ is also onto;
e because 7'0’(a') = 7'((¢/,0)+ N) = 7(0) = 0 for all «’ € A’, we have Im ¢’ C Ker7'.

Therefore, it remains to check that Ker7 C Imo’. Let (¢/,b) + N € Kerr'. Then
7(b) = 7'((¢/,0) + N) = 0, so b € Kerr. Because E is exact, Ker7 = Imo and so
b = o(ay) for some a; € A. Then (a’,b) + N = (a’,0(ay)) + N. Moreover, because
(d',0(a1))—(a'+a(ar),0) = (—a(ay),0(a1)) € N, we have (a/,b)+ N = (d/,0(ay))+ N =
(@' +afay),0)+ N =0'(a' + a(a1)) € Imo’. Hence Ker 7' C Imo’ and so E’ is exact.

Next, we show that the diagram (1) is commutative, i.e., fo = ¢’a and 73 = 1o7.

e Because fo(a)—o'a(a) = [(0,0(a))+ N]—[(a(a),0)+N] = (—a(a),o(a)) + N = N

for all a € A, fo = od'a.
e Because 7/6(b) = 7/((0,b) + N) = 7(b) = 1¢7(b) for all b € B, 73 = 1c7.

Hence the diagram (1) is commutative, i.e., A(a, 3,1¢) : E — E’ is a morphism in the

category &.
Finally, we show the uniqueness of the pair (), E’). Suppose that E; : 0 — A’ SN

’
1 Ty

B, — C — 0 is a short exact sequence and 3, : B — B/1 is an R-module homomorphism



such that A\ («, 81, 1¢) : E — E) is a morphism in &, i.e., the diagram

E,:0—=A—+B,—=C——=0

is commutative. Consider the R-module homomorphism ¢ : A’ ® B — B] defined by
p(a’',b) = oy (a’)+B1(b) for all (a’,b) € A’® B. Note that for all a € A, ¢(—a(a'),0(a)) =
—oy(a(a)) + Bi(o(a)) = 0, since 0,a = fro. Thus N C Ker ¢ and so ¢ induces an R-
module homomorphism § : B = (A’ @ B)/N — B with 6((a’,b) + N) = o,(a’) + 31(b)
for all (a’,b) + N € B’. We claim that (14,8, 1¢) : E/ — E| is a morphism in &, i.e., the
diagram

!

E' 0 A2 g T . ¢ 0

llA/ l(s llc
ol T

Bl 0—=A-TB 0

is commutative. We only need to show o’ = o, and 7,6 = 7'
e Because d0’(a') = d(a’,0) = o (a’) for all ' € A, 60’ = 0.
e Note that for all (a/,b) + N € B,

70((a,b)+ N) = 7(c'(a) + B,(b))
= 10,(a) +7,6.(b)
= 0+ 7(b) (because 7,0, = 0 and 7,3, = 7)
= 7((d’,b)+ N) .

Thus 7,0 = 7.

Hence E is congruent to E’ and the proof is complete. O

Lemma 2.1.4. Let E : 0 - A5 B 5 C — 0 be a short exact sequence. Suppose

v C" — C is an R-module homomorphism. Then there is a short exact sequence

"
"oT

E'":0-A% B"5L C" = 0 and an R-module homomorphism 3 : B" — B such that



the diagram

E" 0—=A—2>B" T 0"

1a lﬁ l’Y
E:0 A—2>B—>C 0

is commutative, i.e., (14, 3,7) : B — E is a morphism in €. Moreover, the pair (6, E")

is unique up to a congruence of E”.

Proof. Similarly as Lemma 2.1.3, we want to find an R-module B” and R-module
homomorphisms ¢”, 7", 3 such that £” : 0 — A 7 B" 7L " — 0 is exact and the

diagram

!

E" 0—=A—2>B" T 0"

llA lﬁ l (2)

E:0 A—">B—=C 0
is commutative. Take B"” = {(b,¢") € B& C" | 7(b) = (")}, which is a submodule of

B® C". Let 7 be the composition of the R-module homomorphisms A = B — B @ C”,
ie,o: A — B® C”is the R-module homomorphism defined by 7(a) = (o(a),0) for
all a € A. Since F is exact, 7o(a) = 0 = ~(0), so (c(a),0) € B”. Therefore, we can
define ¢” : A — B” by 0"(a) = (0(a),0) for all a € A. Also, let 77 : B” — C” be the
composition of the natural homomorphisms B” — B & C” — C”, i.e., 7"(b, ") = ¢’ for
all (b,c") € B”, and let 3 : B” — B be the composition of the natural homomorphisms
B" —- B& C" — B, ie., B(b,c") =0 for all (b,") € B".
We first show that E” is exact.

e Because o is one-to-one, it is clear that ¢” is also one-to-one.

e For each ¢ € C”, since 7 is onto and v(¢") € C, v(¢") = 7(b) for some b € B. Then

(b,c") € B" and 7"(b, ") = ¢". Hence 7" is onto.
e Because 770" (a) = 7"(0(a),0) =0 for all a € A, Im¢” C Ker 7”.

o Let (b,") € Ker” C B”. Then ¢’ = 7"(b,¢") = 0. Also by the definition of B”,
we have 7(b) = v(c") = v(0) = 0, i.e., b € Ker 7. Since FE is exact, b = o(a) for

some a € A. Therefore, (b,¢") = (0(a),0) = 0”"(a) € Imo”. Hence Ker 7" C Imo”.
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Therefore, E” is exact.

Next, we show that the diagram (2) is commutative, i.e., fo” = gl and y7" = 7.
e (0" = ola, because fo”"(a) = F(o(a),0) = o(a) = cla(a) for all a € A.

e Note that if (b, ") € B”, 7(b) = v("). Thus y7"(b, ") —716(b, ") = v(")—7(b) =0
for all (b,c") € B”, and so v7”" = 7.

Hence the diagram (2) is commutative, i.e., (14, 3,7) : E” — FE is a morphism in the

category &.

"
" 7-1

Finally, we show the uniqueness of the pair (6, E”). Suppose E, : 0 — A SN B
C" — 0 is a short exact sequence and 3; : B” — B is an R-module homomorphism such

that 6;(14,51,7) : By — E is a morphism in &, i.e., the diagram

" "

0 A a1 B;/ 1 " 0

b L

E:0 A—2-pB—=C 0

1"

1

is commutative. Since 7(3(b;)) = (7, (b)) for all b, € B}, themap d : B] — B” defined
by §(by) = (Bi(b)), 7 (b)) for all b, € B is well-defined. We claim that (14,6, 1on) :

E| — E" is a morphism in &, i.e., the diagram
E : 0—=A—"%B]~C"—=0
llA ) llc//
E": 0—=A—2>B" T -(C"—0

. . " "
is commutative. We only need to show do; = ¢” and 7, = 7"4.

e For all a € A, we have

doy(a) = d(o\(a))

= (Bi(oy(a), 71 (07 (a)))
= (B10](a),0) (since B, is exact)
= (o(a),0) (since 01(14,31,7) : E1" — E is a morphism in &)
(



o 7/5(b)) =7"(By (b)), (b)) =7, (b)) for all b, € B}, so 76 =T, .
Hence E;" is congruent to E” and the proof is complete. O

From Lemma 2.1.3 and Lemma 2.1.4, we know that (\, E') and (0, E") are uniquely
determined by « and 7, respectively. We denote E' by aF and E” by E-~.

2.2 Connected pairs

Definition 2.2.1. A connected pair (S, E.,T) is a pair of additive functors S, T
together with a function which assigns each short exact sequence £ : 0 — A — B —
C — 0 an R-module homomorphism E, : S(C) — T(A) such that for each morphism
(o, 3,7) : E — E' in the category £, where E:0 - A — B — C —0and E' : 0 —
A" — B — C" — 0 are short exact sequences of R-modules, the diagram
S(C)—"=T(4)

S (W)l T(e)

S(C) A

18 commutative.

Proposition 2.2.2. Let (S, E,,T) be a connected pair and let E:0 - A — B — C — 0

and E':0 — A — B’ — C — 0 be two short exact sequences.
(1) Suppose E is congruent to E'. Then E, = (E'),.
(2) Suppose a: A — A’ is an R-module homomorphism. Then (aE), = T'(a)E..
(3) Suppose v : C" — C is an R-module homomorphism. Then (Ev), = E.S(7).

Proof. For (1), because E is congruent to E’, there exists an R-module homomorphism

d : B — B’ such that (14,6,1¢) : E — E’ is a morphism in &, i.e., the diagram




is commutative. Therefore the diagram

S(C)-Z=T(A)

1S(C):S(IC)l lT(lA):lT(A)
SO Er(a)

is commutative, since (S, E,,T') is a connected pair. Hence we have E, = 1y E, =
(E)1lsc) = (B')x

For (2), by Lemma 2.1.3, there is a morphism (o, 3, 1¢) : E — oF in the category £.
Therefore (aE), = (aF).S(1¢) = T(a)E., since (S, E,,T) is a connected pair.

Similarly for (3), by Lemma 2.1.4, there is a morphism (14, 3',7) : Ey — E in the
category &, 50 (E7y)s =T(14)(EY). = E.S(y). O

Corollary 2.2.3.

(1) Let E:0 — A5 B 5 C — 0 be a short exvact sequence. Then oE and ET are

split.

(2) Let By : 0 — Ay & B & O — 0 be a split short exact sequence. Suppose
(S, E,,T) is a connected pair. Then (E;), = 0.

Proof. For (1), we consider the split short exact sequence E' : 0 — B L BeC S C —0
and define §: B — B ® C by §(b) = (b,7(b)) for all b € B. Using the fact that F is
exact, it is not difficult to check that the diagram

E:0 A—2 -B—" s(C 0

Ll

E:0—=B—~Bo(C-—">C—>=0

is commutative, i.e., (o,0,1¢) : E — E’ is a morphism in €. By Lemma 2.1.3, E' is
congruent to o F. Hence oF is split by Remark 2.1.2. Similarly for E'7, we consider the
split short exact sequence E” : 0 — A L A®B S B — 0and define 6 : A® B — B
by d(a,b) = o(a) + b for all (a,b) € A @ B. Because E is exact, it is also not difficult to

10



check that the diagram

E' 0—sA—"~AdB-—"~B— >0

b

E:0 A—2 ->pB—" -C——=0

is commutative. By Lemma 2.1.4, E” is congruent to E7. Hence ET is split by Re-
mark 2.1.2.

Next, we show (2). Since Ej is split, there is an R-module homomorphism §; : By —
A; such that 6,01 = 14,. Consider the short exact sequence Ey : 0 — A li>1 A —0—0.

Then the diagram

E1:0 A1 2 Bl o Cl 0

\LlAl l(gl \LO
1a,

E2 -0 Al Al 0 0

is commutative, i.e., (14,,01,0) : Fy — FE5 is a morphism in the category £. Because

(S, E,,T) is a connected pair, the diagram

(E1),
1)—=T(A;)

C
l T(1ay)=1lrca;)

is commutative. Hence (E;), =0. O

Remark 2.2.4. By Proposition 2.2.2 and Corollary 2.2.3, for every short exact sequence

0—- A% B C — 0 and for every connected pair (S, E,,T), we have a complex

More precisely, T(0)E, = (0F). = 0, since oE is split; E,S(17) = (ET), = 0, since ET
18 split.

Definition 2.2.5.

(1) Let S and S’ be two additive functors. A matural transformation f: S — S’

is a function that assigns every R-module C' an R-module homomorphism f(C') :

11



S(C) — S'(C) such that if v : C — C} is an R-module homomorphism, then the
diagram
s
S(0)=2-5(Ch)

f(©) f(C)

S/
syl gr(cy)

18 commutative.

(2) Let (S,E,,T) and (S",E,',T") be two connected pairs, and let E: 0 — A — B —
C' — 0 be a short exact sequence of R-modules. A morphism (f,q) : (S, E.,T) —
(S, E.,T") of connected pairs is a pair of natural transformations f : S — S’

and g : T — T" such that the diagram

E.

S(C)—Z-T(A)

IA()) 9(4)
E*/

S0l 4)

15 commutative.

(3) A connected pair (S, E.,T) is said to be right universal if for every connected
pair (S', B/, T") and for every natural transformation f : S — S', there is a unique
natural transformation g : T — T' such that (f,g) : (S, E,,T) — (S, E,,T") is a

morphism of connected pairs.

In this thesis, we only use the definition of being right universal for connected pairs,

so we skip the definition of being left universal for connected pairs.

Theorem 2.2.6. Let (S, E.,T) be a connected pair. Suppose that for every short exact
sequence 0 — A — I — M — 0 with I an injective R-module, the sequence S(I) —

S(M) — T(A) — 0 is exact. Then (S, E,,T) is right universal.

Proof. Let (S’ E./,T") be a connected pair and let f : S — S’ be a natural transfor-
mation. We want to show that there exists a unique natural transformation g : 7" — T”
such that (f,g) : (S, E,,T) — (S, E,/,T") is a morphism of connected pairs. We first

show the existence of g. Let A be an R-module. Then A can be embedded into an

12



injective R-module I, so we have a short exact sequence F4 : 0 — A LTS5 M- 0,

where M = I/i(A). By the assumption, S(I) ) S(M) (Bak T(A) — 0 is exact.
By Remark 2.2.4, S'(I) ¥ S’ (M) (Ba); T'(A) il T'(I) is a complex. And because

f:S — S5 is a natural transformation, the diagram

SN2 s ()

() F(a1)
(02" s (hr)

is commutative. Therefore we have a commutative diagram

SN2 sy B0 ) 0
) f(M)
S/(I)S—(WQS/(M)(EA)* T/(A) T (Z) T/(]) ’

where the upper row is exact and the lower row is a complex. By the above commutative
diagram, we have (E,), f(M)S(n) = (E4).'S'(7)f(I) = 0, and so (Er). f(M)[Ker(E,).]
= (E4). f(M)[ImS(7)] = 0. Thus Ker(E4). C Ker[(E4). f(M)]. Moreover, because
T(A) = S(M)/Ker(E4)., there exists an R-module homomorphism g(A) : T(A) — T'(A)
such that

Hence, for every R-module A, we assign A an R-module homomorphism g(A) : T(A) —
T'(A) such that g(A)(EA). = (E4). f(M).
Next, we show that ¢ : T' — T is a natural transformation. Let o : A — A; be an

R-module homomorphism. We want to show that the diagram

T(x
T(A)-22Lr(A,)
g(A) g(A1)
T'(A) L7 (Ay)

is commutative, i.e., g(A1)T(a) = T'(a)g(A). Similarly as above, we have a short exact

) T [ . .
sequence Ey, : 0 — Ay — I} — M; — 0, where I is injective, and a commutative

13



diagram

T E *
S(1) 2 s () E i ay) 0
f1) f(My) g(A1)

Sl ™1 (E 1)*, / /
§(1) 2 (M) 2T (A —= T (L)

where the upper row is exact and the lower row is a complex. In particular, we have

(Bay)< f(M1) = (A1) (Ea,)s - (2)

We consider the diagram

EA:0 At o] T M0

-

EA1:0 Al = ]1 i M1 0

Note that because I; is injective, there exists an R-module homomorphism G : I — 4

such that the diagram
0—=A—Ls]
17
I
is commutative, i.e., i = iy«. Also, since m 31 = mi;ae = 0, Imi C Kerm 3. Thus
there exists an R-module homomorphism ~ : M — M, such that ym = m; 6. Therefore,

we have a commutative diagram

EA:0 At o T M 0

bt

EA1:0 Al = ]1 i M1 0 y

ie, (o,0,7) : Ex — E, is a morphism in the category £. Since (S, E,,T) and

(S’ B/, T") are connected pairs,
T()(Ea) = (Ea,)«S(7)  and  T'(a)(Ea)s’ = (Eay).'S'(7) - (3)
Moreover, because f : S — S’ is a natural transformation,

S'(Nf(M) = f(M)S(7). (4)

14



Thus we have

T'(a)g(A)(Ea). = T'()(Ea).'f(M)  (by(1))
= (Ba)S'(M (M) (by(3))
= (Ea) f(M)S(7)  (by(4))
= (A1) (E4,):S(7) (by(2))
= g(A)T(a)(Ea)x (by(3))

Hence T"(a)g(A) = g(A1)T (), since (E4). is onto.
Next we show that (f,g): (S, E,,T) — (S, E,/, T") is a morphism of connected pairs,

ie,if F:0— A— B — (C — 0is a short exact sequence, then the diagram

E.

S(C)——=T(4)
1) 9(4)
E.’

S'(C)—=T'(A)
is commutative. So far we already show that for each R-module A with the special short

exact sequence K4 : 0 — A — I — M — 0, the diagram

S(M) E )

fv) 9(A)
§/(M)E ()
is commutative. Let £ :0 — A — B — C — 0 be a short exact sequence. We consider
the diagram
E:0 A B C 0

1a
Es:0 A I M 0.

Because [ is injective and because the map B — (' is onto, similar as above, there exist

R-module homomorphisms p: B — [ and v : C' — M such that (14, p,v) : E — Ej4 is

a morphism in the category &, i.e, the diagram




is commutative. By the fact that (S, E,,T) and (S, E,’, T") are connected pairs, we have
E, = (E4),S(v) and E,' = (E,),'S'(v). Moreover, f(M)S(v) = S'(v)f(C), since f is a

natural transformation. Therefore,
I(A)E, = g(A)(Ea)S(v) = (Ba)s f(M)S(v) = (Ea).'S'(v) f(C) = E. f(C).

Hence (f, g) is a morphism of connected pairs.

Finally, we show that ¢ is unique. Suppose that g; : T'— T is a natural transforma-
tion such that (f,¢1) : (S, F,.,T) — (S’, E./,T") is a morphism of connected pairs, i.e.,
g(A)E, = E,/f(C). Then ¢;(A)E, = E.'f(C) = g(A)E.. Thus g;(A) = g(A) for every

R-module A, since F, is onto. Hence g; = ¢g and this proof is complete. O

2.3 Connected sequences and universal connected sequences
Definition 2.3.1.

(1) Let {T"},>0 be a family of additive functors and let {E™},>0 be a family of func-
tions. A connected sequence {T", E"},>¢ is a sequence {--- ,T" E™, T"" ...}

such that each pair (T™, E™, T""') is a connected pair for all n > 0.

(2) A connected sequence {T", E"},>o is said to be universal if for every connected
sequence {T"", E"™},>¢ and for every natural transformation f°: T° — T°, there
is a unique family of natural transformations {f"}n>1 such that f"H1E™ = E'" "
for alln > 0, i.e., for each short exact sequence of R-modules £ : 0 — A — B —
C — 0, the diagram

T7(C)—E5 T+ (A)
(@) lf”“(A)
T (C)Z1m 41 4)

18 commutative.

Remark 2.3.2. A connected sequence {T™, E™},>o assigns every short exact sequence

EFE:0—-A— B—C—0 acomplex
= T(A) > T(B) —» T"(C) 5 T (A) — -

16



This follows from the definition of connected sequences and Remark 2.2.4.

Theorem 2.3.3. Let {T™, E™},>0 be a connected sequence. Suppose that for every short
exact sequence 0 — A — I — M — 0 with I an injective R-module, the sequence

T(I) — T"(M) — T" 1 (A) — 0 is exact for alln > 0. Then {T", E"},>0 is universal.

Proof. Let {7, E"},>0 be a connected sequence and let fO: 7% — T be a natural
transformation. We want to show that there exists a unique family of natural transforma-
tions {f"},>1 such that f"™1E™ = E™ f* for all n > 0. First note that for every n > 0,
(T, E™, T"") is a connected pair. Since for every short exact sequence 0 — A — I —
M — 0 with I an injective R-module, the sequence T"(I) — T"(M) — T" " (A) — 0 is
exact for all n > 0, by Theorem 2.2.6, (T, E™, T™") is right universal for all n > 0.
Now, we show the existence of { f"},,>1 by induction on n. For n = 1, because we have
a right universal connected pair (7°, E°, T') and a natural transformation f0 : 70 — 7"°,
by Definition 2.2.5, there is a unique natural transformation f' : 7% — T"' such that
(fO, fY : (T° E°, T — (T"°,F"°, T"") is a morphism of connected pairs, i.e., for every

short exact sequence of R-modules £ : 0 — A — B — C — 0, the diagram

TO(C)—=T"(4)
fo(C)l lfl(A)
T°(C) 217 (4)
is commutative, i.e., fLE® = E"° 0.

Next, suppose n > 2 and suppose for k = 1,2,--- ,n — 1, there exist natural trans-
formations f* : TF — T'* such that fFEF-! = E'* ' fk=1 Because the connected pair
(T"=', E"=1,T™) is right universal and "' : 7"~' — T ' is a natural transforma-
tion, again by Definition 2.2.5, there is a unique natural transformation f™: 7™ — T
such that (f*1, f*) : (T Y, B, T") — (T"""", B!, T"™) is a morphism of connected
pairs, i.e., fPE" = B 21 Hence {f"},>1 is a family of natural transformations
such that fP"T1E™ = E' f" for all n > 0.

Finally, we show the uniqueness of {f"},>1. In the above proof, we know that f"!

is uniquely determined by f” for all n > 0. Since f° is given, the proof is complete. O
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In the next corollary, we use Theorem 2.3.3 to give some other conditions that guar-
antees a connected sequence {1™, E"},,>o to be universal. Later in this thesis, we will

use the following corollary to prove that certain connected sequences are universal.
Corollary 2.3.4. Let {T™, E"},>0 be a connected sequence and suppose that
o T"(I) =0 for all injective R-modules I and n > 0, and that
e for every short exact sequence E :0 — A — B — C' — 0, the assigned complex
- T"(A) = TB) — T*(C) B T (4) — - -
15 ezact.
Then {T™, E™},>0 is universal.

Proof. Let F:0 — A — I — M — 0 be a short exact sequence with I an injective

R-module. By assumption, we have an exact sequence
= T(A) = T(1) = T (M) 5 T (A) — -

Since T™(I) = 0 for all n > 0, we see that T™(I) — T"(M) — T"1(A) — 0 is exact for

all n > 0. By Theorem 2.3.3, {T", E"},,>¢ is universal. O

Lemma 2.3.5. Let {T", E"},>0 and {T"", E"" },,>0 be two connected sequences. Suppose
{T", E"} >0 and {T", E"™}>0 are universal with T° = T"°. Then T™(A) =2 T"(A) for
all R-module A and n > 0.

Proof. Because the connected sequence {T™, E"},>q is universal and f® =1: 7% —
T is a natural transformation, by Definition 2.3.1, there exists a family of natural
transformations {f"},>; such that f"™E™ = E'"f" for all n > 0, i.e., for each short

exact sequence of R-modules £: 0 — A — B — C — 0, the diagram

T(C)—E T+ (A)
f(C) frti(A)
T™(C) 5 (4)
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is commutative for all n > 0. Similarly, since the connected sequence {T"", E™"},>¢ is
universal and f* =1 : 7" — T° is a natural transformation, there exists a family of
natural transformations {f""},>1 such that RN = B for all n > 0, ie., for

each short exact sequence of R-modules £: 0 — A — B — C' — 0, the diagram

Tm(C)i”;Tm-H(A)
7m©) A
T(C)—=T"+(A)

is commutative for all n > 0. Therefore, the diagram

T7(C)—EoTr+1(A)

(o) lf"“(A)
Tm(C —>Tm+l(A)
(e l N A)

Tn-i-l(A)

is commutative for all n > 0, i.e., f’"“f"“E" = E"f™f" for all n > 0. Hence for the
connected sequence {7, E™},>o and the natural transformation 170 = f/°f0 : 70 — T,
{f"™f™} 51 is a family of natural transformations such that (f™*' f*+E" = E*(f™ f")
for all n > 0. On the other hand, it is clear that {17=},>; is also a family of natural

transformations such that 17n+1 E™ = E™ 17+ for all n > 0. Since the connected sequence

{T™, E"} 50 is universal, { ™ f"}os1={1r fns1, Le.,
" f" =1 foralln > 1.

Similarly, because for each short exact sequence of R-modules £ : 0 — A — B — C — 0,

the diagram

l A
T(C)—ETm 1 (A)
l fria)
T(C) T A)
is commutative for all n > 0, i.e., fPH " E™ = E™f ™ for all n > 0. Thus for

the connected sequence {T"", E"*},>o and the natural transformation 1p0 = fOf° :
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T° — T {f"f™}n>1 is a family of natural transformations such that (f*+1f" ) E" =
E"(frf™) for all n > 0. Again, it is clear that {17 },>1 is a family of natural trans-
formations such that 11 B = E"™ 174 for all n > 0. Since the connected sequence

{T"", E"} >0 is universal, { """ }s1={11m }n>1, i€,
frf™ = 1pm foralln > 1.

Therefore, f"(A) : T"(A) — T""(A) is an isomorphism for all R-module A and n > 0.
Hence T"(A) 2 T"(A) for alln > 0. O
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3 Local Cohomology and Cech Complexes

3.1 Local cohomology vs universal connected sequences

In this section, we will show that {H}(—), E"},>0 is a universal connected sequence. In

order to do so, we need some properties of the right derived functors and cohomology.
Definition 3.1.1. ([3], 10.1) Let X and Y be cochain complexes.

(1) A cochain map f : X — ) is said to be null-homotopic if for all n, there exist
maps S, : X, — Y,_1 such that 6,8, + Spi1Ans1 = fn, where \, and 0, are the

boundary maps in X and Y, respectively.

(2) Cochain maps f,g: X — Y are said to be cochain homotopic, and denoted by
f~g,if f—g is null homotopic .

(3) A cochain map f : X — Y is called a homotopy equivalence if there ezists a
cochain map g : Y — X such that gf ~ 1x and fg ~ 1y. In this case we say that

X and Y are homotopy equivalent.

Remark 3.1.2. ([3], 10.1) It is well-known that if a cochain map f : X — Y is null-

homotopic, then the induced map f* on cohomology is the zero map.

Let A be an R-module and let T" be a left exact additive functor. The nth right

derived functor R™1" associate to 1" is defined as the following.

e For an R-module A, R"T'(A) = H"(T(Z4)), where Z 4 is a cochain complex obtained
by deleting A from an injective resolution Z of A and T'(Z4) is the cochain complex

obtained by applying 7' to every term in Z4.
e For an R-module homomorphism f: A — B,
R'T(f) = (T )" : H'(T(Za)) — H"(T(Z5))

is the map on cohomology induced by the cochain map T'f : T(Z4) — T/(Zg), where

f : T4 — Ip is a cochain map lifting f via the Comparison Theorem.
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Proposition 3.1.3. ([3], 10.5)(Comparison Theorem) Let A and B be R-modules.

Let h : A — B be an R-module homomorphism. Suppose that

N 0—= A2 N2 N,

lh
L)

QIO B QQ

Y1

Q1

is a diagram of complexes with Q,, injective for each n > 0 and N exact. Then there
exist maps h, : N, — @Q, making the diagram commute. In other words, there exists a

cochain map h : N' — Q lifting h.

Note that if Z and 7’ are two cochain complexes obtained by deleting A from injective
resolutions of A, then Z and Z’ are homotopy equivalent. Moreover, T' carries homotopy
equivalent cochain complexes to homotopy equivalent cochain complexes and carries chain
homotopic cochain maps to chain homotopic cochain maps. Hence R™T" does not depend

on the choice of injective resolutions.
Lemma 3.1.4. ([3], 11.9) Let T be a left exact additive functor.
(1) R"T is an additive functor for all n > 0.

(2) RT(A) = T(A) and R°T(f) = T(f), for all R-modules A and R-module homo-

morphisms f.

(3) For each short exact sequence of R-modules E: 0 — A — B — C — 0, there is a

long exact sequence of cohomology

0 — RT(A) — R'T(B) — R'T(C) — R'T(A) — - --

(4) Let E:0 — A2 B 5 C — 0 be a split short exact sequence of R-modules. Then
the sequence T(E) : 0 — T(A) e T(B) o T(C) — 0 is exact.

Now we know that R™T is an additive functor for all n > 0 with R°T = T. We let
E™ denote the connecting maps R"T'(C') — R"'T(A) for all n > 0.

22



Lemma 3.1.5. ([4],2.4.1) Let E: 0 — K 2L % M = 0 be a short ezact sequence of
cochain complexes, where ¢ and 1) are cochain maps. Then there is a long exact sequence

of cohomology

(™)

— H"(KK) X mr ) YN

H" (M) — H"™(K) — - --

where (¢™)* and (Y™)* are the maps of cohomology induced by the R-module homomor-

phisms ¢" : K™ — L™ and Y™ : L — M", respectively, for all n.
We also let E™ denote the connecting map H"(M) — H"(K) for all n.

Lemma 3.1.6. (4],242) Let E:0 - K —-L—->M—>0and £': 0 - K — L' —
M’ — 0 be two short exact sequences of cochain complexes. Suppose that there are three

cochain maps f: K — K', g: L — L', and h : M — M’ such that the diagram

1s commutative. Then the diagram

H™(M)——~H"+}(K)
(h”)*l ()
n / (E)" n+1 !

H"(M')—=H"1(K)

1s commutative for all n.

Proposition 3.1.7. Let 0 — A 2 B =5 C — 0 be a short exact sequence of R-
modules. Then there is a short exact sequence of complexes 0 — ITp — Ip — I — 0,

where Ly, I, Lo are injective resolutions of A, B, C', respectively.

Proof. First, we embed B and C into injective R-modules Ay and Cj, respectively,
and let ¢g : B — Ag and hy : C — Cy be embedding maps. Then the composite
fo = ¢oog : A — Ag is an R-module monomorphism, since ¢y and oy are both R-module

monomorphisms. Now we define gy : B — Ay @& Cy by go(b) = (¢o(b), hoto()) for all
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b € B. Then it is not difficult to check that the diagram

0—sA—2 B .0 .0

I

0—=Ag—>Ag B Cp—=sCy—=0

is commutative. Moreover, because fy and hy are both one-to-one, gq is one-to-one, by
the Five Lemma. Also, Ay & Cj is injective since Ay and Cj are injective. Then the

diagram

g0 70

0
B
fo J{QO ho

0—=Ag—sAg D Cp—=sCy—=0

-— <=0
~— Q=—0o

1s commutative with exact rows and columns.

Secondly, by the Snake Lemma, we have the exact sequence
0 — Ker fy — Ker g9y — Ker hg — Coker fy — Coker gg — Coker hg — 0 .

Because hg is one-to-one, 0 — Coker f; 25 Coker gy — Coker hyg — 0 is exact, where oy
and 71 are the R-module homomorphisms induced by 7 : Ag — Ag®Cyand 7 : Ay Cy —
Cy, respectively. Similar as above, there are injective R-modules A;, C; and R-module

homomorphisms ¢+, fi, g1, and hy such that the diagram

0 0 0

0—Coker fy—Coker go—Coker ho—=0 (2)
A

0 Ay ‘ A @ C1—= Cy 0

is commutative with exact rows and columns. We take

fl = fl T Ag» g1 = mﬂ-AoEBCoa and h'l = hl TCy »

where 7y, : Ay — Coker fo, Ta,mc, : Ao ® Cy — Coker go, and 7¢, : Cy — Coker hy are

the canonical epimorphisms. Since f; is one-to-one and Ker 74, = Im f;, Ker f; = Im f;.
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Similarly, we have Kerg; = Im gy and Ker h; = Im hy. Hence, from the commutative

diagrams (1) and (2), we see that the diagram

fo g0 ho (3)
0—>A0—i>A0 @D COL>C(] —0

fi g1 h1

0—>A1—i>A1 D 01L>01 —0

is commutative with exact rows and columns.

Thirdly, applying the Snake lemma to the diagram (2), because h; is one-to-one, we
have the exact sequence 0 — Coker f; 25 Coker g7 — Coker h; — 0, where o5 and 7 are
the R-module homomorphisms induced by i : Ay — A; & C; and 7 : Ay & Cy — (Cf,
respectively. Then similar as above, there are injective R-modules Ay, C5 and R-module

homomorphisms ¢s, fo, Gz, and hs such that the diagram

0 0 0

0——=Coker ELCOI{GI T1—=>Coker h;—0 (4)
EO -

0 Ay ‘ Ay @ Cp—= Cy 0

is commutative with exact rows and columns. On the other hand, since Im f; = Im f;,
Coker f; = Coker f;. Similarly, we have Coker g; = Coker g7, and Coker h; = Coker h;.
We take

f2:f27TA1> 92:%7TA1€BC1> and h2:h27r01>

where 7y, 1 Ay — Coker f1 = Coker fi, Taec, @ A1 @ Cp — Coker g = Coker gy, and

7o, : C1 — Cokerh; = Coker h; are the canonical epimorphisms. Similar as above,
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combining the commutative diagrams (3) and (4), we have the commutative diagram

0 0 0

0 A—2 .p— " .0— 0

fo g0 ho
0—>A0—i>A0 ©® COL>00—>O (5>
fl g1 h1

0—>A1 —Z>A1 @ Cl L>Cl —>O
f2 g2 ho

0—>A2 —Z>A2 @ C2 L>Cg —>O

in which all rows and columns are exact.

Finally, continue the same discussion, then we will get injective resolutions Z, : 0 —
AL A IS A L of AT 0 BB By = Ay®Cy 2 By = A @ Cy 2 -
of B, andIC:OHCﬂCOLCl 2, of C' such that 0 - 74 — Zp — Zc — 0 is

exact. The proof is complete. O

Let E:0— A2 B C—0and E':0— A 25 B ™ ¢ — 0 be two
short exact sequences of R-modules. By Proposition 3.1.7, for the short exact sequence
E, there exists a short exact sequence of complexes 0 — Z4 — ZIp — Z¢ — 0, where Zy4,
I, Ic are injective resolutions of A, B, C, respectively. In particular, we know that the
nth level of the short exact sequence of complexes 0 - Z4 — ZIp — Z¢c — 0is0 — A, N
A, ®C, = C, — 0 for all n > 0. Similarly, for the short exact sequence E’, there exists
a short exact sequence of complexes 0 — Z4» — Zp — Lo — 0, where Zy, Ipr, Ter
are injective resolutions of A’, B’, C’, respectively. And the nth level of the short exact
sequence of complexes 0 — Zy — Zg — Zer — 0is 0 — A,/ LA ec, S0, — 0 for
all n > 0. In the next proposition, we will show that if (o, 3,7) : E — E’ is a morphism

in the category &, then there exist three cochain maps @&, 3, and 4 such that the diagram

0 Ta Ip Lo 0

bk




1s commutative.

Proposition 3.1.8. Let £ : 0 - A 2 B > C —-0ad E' : 0 —» A 2 o', g ™,
C" — 0 be two short exact sequences of R-modules. Suppose that (o, 3,7) : E — E' is a

morphism in the category &, i.e., the diagram

E:0 A-2-pB-".C 0

L bk

E':0 A’ B 0

is commutative. Then there exist injective resolutions T, Ig, I, Za, Ip, e of A, B,
C, A, B', C', respectively, and three cochain maps & : Tn — Ly, B:7IZp — Ip, and
Y :Zo — Lo such that the diagram

0 Ta Ip Lo 0

bk

0 La Ip Lo 0

18 commutative.

Proof. Recall that in the proof of Proposition 3.1.7, for the short exact sequence F, we

construct injective resolutions

Ta:0— AL 4, Lo 4 2
T, 0—CMc, o 22

such that 0 - Z4 — Zp — Zc — 0 is exact. In particular, we use two embedding maps
0o : B — Ag and hy : C' — Cj to obtain the maps fy and go; more precisely, fo = ¢goq
and go : B — Ay @ Cp is defined by ¢o(b) = (¢o(b), horo(b)) for all b € B. Similarly, for

It ex u Wi ruct injective resoluti
the short exact sequence E’, we can construct injective resolutions

T :0— A Ay L5 4 2
T 0= B % B/ = A/ &Cy 25 B = A/ &y 22
To:0— 0™ oy M5 oy
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such that 0 — Zo — Zp — Zo — 0 is exact; we also use two embedding maps
¢ B — Ay and hy' : O — Cy to construct the maps f,’ and gy’; more precisely,
do'ce’ = fo' and g¢’ : B' — Ay @ Cy is defined by go/ (/) = (o' (V), hjmo(V')) for all
b e B.

Because  : A — A’ is an R-module homomorphism, by the Comparison Theorem,

there is a cochain map & : Z4, — Zy, i.e., the diagram

0 A fo A, f1 A, f2

loc lao \Lal
fo 11’ ;2

0 A Ay Ay

is commutative. Similarly, since v : C' — C” is an R-module homomorphism, there is a

cochain map 4 : Zg — Z¢v, i.e, the diagram

0— >0 oyt 22
lv lvo lw
00—t oy o

is commutative. We want to find a cochain map ﬁ : Ip — Ip/, such that the diagram

0 Ta Ip Lo 0

bk

0 La Ip Lo 0

is commutative.
First, we want to find an R-module homomorphism 3y : Ao @ Cy — Ay © Cy’ such

that the 3-dimensional diagram
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0 A B C 0
2
0 A/ 90 B/ "o C/ 0
fO 90 ho
fo 90 hi
0 Ag Ay @ Cy Cy 0
Qo Bo /70
0 Al A&l c 0 (1)

is commutative. Since we already know that the upper level diagram and the left and the
right vertical diagrams are commutative, it remains to show that the lower level diagram
and the middle vertical diagram are commutative. First of all, because 7y is onto, for
each ¢ € C, there exists b € B such that ¢ = 74(b). If ¢ = 19(b1) = 19(b2) for by, by € B,
then 79(by — b)) = 0, and so b — by € Ker7y. Since E is exact, Ker g = Im oy and so

by — by = 0g(a) for some a € A. Because ¢y'a¢ = fo' and ¢go9 = fo, we have

[¢0/5(bl) - 040<Z50(bl)] - [¢0/5(b2) - 040<Z50(b2)]
= ¢0/5(51 - 52) - Oéo¢0(b1 - bz)
= ¢o'B(00(a)) — ango(oo(a))

= ¢o'oo’'a(a) — apgo(oo(a)) (since Bog = 0¢')

= fo’a(a) — g fo(a) (since $o'o’ = fo' and ¢yo0 = fo)
= (fo'a — aofo)(a)

=0.

Thus for all ¢ € C, we can define a map g : C — Ay’ by po(c) = po(ro(b)) = ¢o'B(b) —
appo(b) where b € B with 79(b) = ¢. For all ¢1, ¢o € C, there exist by, by € B such that
¢1 = 7o9(b1) and ¢3 = 19(by). Then we have ¢; 4+ ¢o = 79(b; 4 b2) and then it is not difficult

to check that pg is an R-module homomorphism. Moreover, because Ay’ is injective,
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there exists an R-module homomorphism vy : Cy — Ay’ such that the diagram

0—=Cc—2

"

Ay’

is commutative, i.e., 1phg = pg. Therefore, we can define 8y : Ay & Cy — Ay @ Cy
by Bo(ag, co) = (ap(ag) + vo(co),vo(co)). It is not difficult to check that the lower level
diagram in (1)

0——Ay——A4)® Cp——=Cyp——0

N

0—A)y—A) ® C) —=Cy'—0

is commutative. Now we show that the middle vertical diagram in (1) is commutative,

i.e., Bogo = go'f. For all b € B, recall that go(b) = (¢o(b), homo(b)), so

Bogo(b) = Bo(¢o(b), hoo(b))
= (ao(¢o(b)) + vo(hoo(b)), Yo(hoTo(b)))

= (aogo(D) + pomo(b), ho'y10(b)) (since vohg = po and Yoho = ho'y)

= (¢0'B(b), ho"y7o (b)) (since p1o(70(b)) = o' B(b) — cndo(D))
= (¢o'B(b), ho'1o' B(D)) (since y7o = 70/8)

= go'B(b) .

Hence (ygo = go'/3, and we show that the 3-dimensional diagram (1) is commutative.
Secondly, because the 3-dimensional diagram (1) is commutative, the 3-dimensional

diagram
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AN
0 Ay A @ Cy Cy 0
T Ao TBy TCy
T Ay TRy Ty
0 > Coker fo + Coker go— Coker hg —— 0
ﬁo* A/ﬁo* ﬁo*

Coker fy' —Coker gg'— Coker hy —— 0 (2)

0

is also commutative, where og* : Coker f, — Coker fy', By* : Coker go — Coker gy/,
7o+ Coker hy — Coker hy' are the R-module homomorphisms induced by aq, 5o, 7o,
respectively. Similar as above, we can find an R-module homomorphism 3; : A; & C, —

A, @ C}’ such that the 3-dimensional diagram

0 Coker fo — Coker go — Coker h —— 0
ay ﬂy Vy
0 Coker fo = Coker go' = Coker hy’ —— 0
fl g1 hl
fi 9 hi
0 Aq AL Ch Ch 0
(€31 [3’1 /’1
0 Al Al Cy c 0 (3)

is commutative. Combining the 3-dimensional diagrams (1), (2), and (3), we have the

commutative 3-dimensional diagram
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0 0 0
0 A B C 0

0 A’/ B’/ 0'/ 0
0 Ay Ay ® Cy Cy 0

0 AO’/ Ay @ é 00’/ 0
0 A A @ Cy o 0

0 A, A & c 0 (4)

Finally, continue the same discussion, then we will get R-module homomorphisms (3, for

all n > 2 such that the diagram

is commutative. This completes the proof. O

Theorem 3.1.9. Let T be a left exzact additive functor. Then {R™T, E™},>¢ is a universal

connected sequence.

Proof. First, we show that { R"T, E"},,>¢ is a connected sequence, i.e., (R"T, E™, R"1T)
is a connected pair for all n > 0. Let (o, 3,7) : E — E’ be a morphism in the category
E where E:0 A —-B—-C—-0and E :0—- A — B — C" — 0 are two short
exact sequences of R-modules. We want to show that the diagram
R"T(C)—E=R1T(A)
R"T () R 1T () (1)

(El)’!L

RT(C) X prip )
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is commutative. By Proposition 3.1.8, there exist injective resolutions Z4, Zg, Z¢, Zar,
Ip, Icr of A, B, C, A', B’, (', respectively, and three cochain maps & : Zy, — Zyu,
ﬁ :Ip — Ip, and v : I — Z¢ such that the diagram

0 Ta Ip Lo 0

b

0 La Ip Lo 0

is commutative. Then the diagram

0——T(Za)——T(Ip)——T(Zc)—=0
() lT(B) lm) (2)
0——T(Za)—T(Zp)—T(Icr)—0
is commutative. Because the ith level of 0 — 74 — Ip — I — 0 is 0 — A; —
A; @ C; — C; — 0, which is a split short exact sequence, 0 — T'(4;) — T(A; & C;) —
T(C;) — 0 is exact by Lemma 3.1.4 (4). Similarly, since the ith level of 0 — Z4 —
I —Zer — 0is 0 — A, — Al @ C! — C] — 0, which is a split short exact sequence,
0—T(A) - T(A, & C!) — T(C}) — 0 is exact. Thus both rows of the commutative
diagram (2) are exact. Therefore, by Lemma 3.1.6, the diagram
H(T(Ze)——=H"(T(Z4))
(T(yn))* (T(an41))* (3)
HYT(Za))- 5 H(T(Z))
is commutative. By the definition of right derived functors, the diagram (1) is just the
diagram (3). Hence the diagram (1) is also commutative and so (R"T, E™, R"*1) is a
connected pair for all n > 0.

Next, we show that the connected sequence { R"T, E"}, > is universal. Note that for
all injective R-modules I, 0 — I — I — 0 is an injective resolution of I. Since T is left
exact, 0 — T'(I) — T(I) — T'(0) = 0 is exact and so R"T'(I) = 0 for all n > 0. On the
other hand, by Lemma 3.1.4 (3), for each short exact sequence 0 - A — B — C — 0,

there is a long exact sequence of cohomology
0 — R'T(A) — R°T(B) — R'T(C) — R'T(A) — - -

Therefore, { R"T, E"},,>¢ is universal by Corollary 2.3.4. This completes the proof. O
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Theorem 3.1.10. {H](—), E"}n>0 is a universal connected sequence with the initial

HY,(=) = Tm(-).

Proof. Because I'y,(—) is a left exact additive functor, {H},(—), E"} >0 is a universal
connected sequence by Theorem 3.1.9. Moreover, by Lemma 3.1.4 (2), we have that

H? (=) = 'm(=). The proof is complete. O

3.2 Injective hulls

Definition 3.2.1. Suppose v : N — M 1is an R-module embedding map.

(1) M is said to be an essential extension of N if i '(U) # 0 for all nonzero

submodules U of M.
(2) An essential extension M of N is said to be proper if i is not onto.

Remark 3.2.2. Ifi: N — M is an R-module embedding map, we use the convention
that U NN denotes the pre-image of U in N, i.e., UNN = i Y(U). We also use the

notation N C M to indicate that i is not onto.

From Definition 3.2.1, we know that for every R-module N, N is an essential extension
of N itself. In Proposition 3.2.4, we will show that N has no proper essential extension
if and only if /V is an injective R-module. Before we prove Proposition 3.2.4, we present

a lemma that we need in the proof.

Lemma 3.2.3. Given an R-module monomorphism ¢ : U — V and an R-module homo-

morphism f: U — N, we let W = (V @ N)/C, where
C={(¢(x), —f(z)) eVON |z €U}

1s a submodule of V& N. Take g : V. — W to be the composition of the natural
homomorphisms V. — V& N — W = (V. @& N)/C, i.e., g(v) = (v,0) + C for all

v € V; and take v : N — W to be the composition of the natural homomorphisms
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N—->V&eN->W=(Vae&N)/C, ie., (n) = (0,n) + C for alln € N. Then 1) is
one-to-one and the diagram

U—2-v

|,k

N—ew

is commutative, i.e., g = U f.

Proof. First, we show that ¢ is one-to-one. Let n € Kert. Then (0,n) € C and
so (0,n) = (¢(z), —f(x)) for some x € U. Because ¢ is one-to-one, z = 0 and we get
n = —f(x) = —f(0) = 0. Hence 1 is one-to-one.

Next, we show that g¢ = ¢ f. Note that for all x € U, since (¢(z), —f(x)) € C, we
have (¢(z),0) +C = (0, f(x)) + C. Thus g (z) = (¢(x),0) +C = (0, f(z)) + C = ¢ f(x)
for all x € U. Hence gp = f. 0O

Proposition 3.2.4. Let N be an R-module. Then N has no proper essential extension

if and only if N s an injective R-module.

Proof. Suppose N has no proper essential extension. Now we show that IV is injective,
ie., if ¢ : U — V is an R-module monomorphism and f : U — N is an R-module
homomorphism, then there exists an R-module homomorphism « : V' — N such that

the diagram
0—U—2>V

|

N

is commutative. By Lemma 3.2.3, there exist an R-module W and R-module homomor-

phisms g : V. — W and ¢ : N — W such that the diagram

N Ve

g (1)
(5

is commutative. Moreover, since ¢ : N — W is a monomorphism, N can be thought as

a submodule of W. In order to find an R-module homomorphism «, we consider the set
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Y ={D | D is a submodule of W with DN N = 0}. It not difficult to check that (3, C)
is a nonempty partially ordered set and that every chain in ¥ has an upper bound. By
the Zorn’s Lemma, Y has a maximal element. Let D be a maximal element in ¥. Since
DN N = 0, the composition of the homomorphisms N Yow 5 W/D is one-to-one.
So we can also think of N as a submodule of W/D. We want to show that W/D is an
essential extension of N. Suppose W/D is not an essential extension of N. Then there
exists a nonzero submodule W’/D of W/D such that (W'/D) NN = 0, where W’ is a
submodule of W with D C W’. We claim that W/ NN = 0. Let = € W/ N N. Then
x = 1(n) for some n € N and we have x + D = 7(z) = m(n) € (W'/D) N N. Because
(W//D)NN=0,ze€D. Thusz € DN N =0. So we have W NN =0. Then W' € ¥
with D C W’. This contradicts the fact that D is a maximal element in 3. Therefore,
W/D is an essential extension of N. By assumption, N = W/D, ie. mp: N — W/D
is an isomorphism. Then there is an R-module homomorphism 6 : W/D — N such that
d(m) = 1y, i.e., the diagram
N—w

| (2)

W/D

)

is commutative. Combining the diagrams (1) and (2), we get the commutative diagram

W/D.
Take a = dmg, then we have a¢ = (drg)p = dnf = 15y f = f. Hence N is injective.
Conversely, suppose N is an injective R-module. We claim that N has no proper
essential extension. Suppose that M is a proper essential extension of N. Because N is
injective, N is a direct summand of M, i.e., there is a submodule M; of M such that
M;NN =0and M = N+ M. Since N C M, M; # 0. This contradicts the fact that M

is a proper essential extension of N. Hence N has no proper essential extension. O

36



Definition 3.2.5. Let M be an R-module. An injective R-module E s said to be an
injective hull of M if E is an essential extension of M. We denote E by E(M).

Now we show the existence of injective hulls of M and some properties related to

injective hulls of M.
Lemma 3.2.6. Let M be an R-module.
(1) M has an injective hull.

(2) Let E be an injective hull of M and let I be an injective R-module. If f: M — I
1s an R-module monomorphism, then there exists an R-module monomorphism ¢ :
E — I such that the diagram
M—~E

14

1

1s commutative, where i : M — E is the embedding map.

(3) If E and E' are injective hulls of M, then there exists an R-module isomorphism
¢ E — E' such that the diagram

M—"sE

|4

E/
1s commutative, where i and i, are the embedding maps.

Proof. For (1), M can be embedded to an injective R-module I. We think of M as a
submodule of I, i.e., M C I. Consider the set

Y. ={F | EC1Iand F is an essential extension of M} .

Then (X, C) is a nonempty partially ordered set since M € Y. Now we show that every
chain {E;}ic; in ¥ has an upper bound. Take N = J,.; £5. Then N is an R-module
with M C N C I. Let N; be a nonzero submodule of N. Then there exists x € N; such

that x # 0. So € E; for some ¢ € I. Thus Rz is a nonzero submodule of E;, and so
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Rx N M # 0 since F; is an essential extension of M. Therefore we have Ny N M # 0.
Thus N is an essential extension of M and so N € . Hence N is an upper bound
of the chain {E;};c;. By the Zorn’s Lemma, 3 has a maximal element. Let E be a
maximal element in . We claim that E is an injective hull of M. Because F is an
essential extension of M, by Definition 3.2.4, it remains to show that F is an injective
R-module. However, by Proposition 3.2.3, it is enough to show that E has no proper
essential extension. Suppose that E’ is a proper essential extension of E. Because [ is

injective, there exists an R-module homomorphism v : E/ — I such that the diagram

0—>E—"s F

4

I

is commutative, where i; and i are embedding maps. Note that if Ker¢y # 0, then

Kerty N E # 0 since E’ is an essential extension of £. However for a € Kery N FE,

0 =9(a) = ¢(ir(a)) = iz(a) = a.

Therefore Kery = 0, i.e., ¢ is one-to-one. Because F C E' and Kery =0, E C Imy C [.
Now we claim that Ims is an essential extension of M. We know that every nonzero

submodule of Imv) is of the form ¢ (E,"), where 0 C E," C E’ since 1 is one-to-one. Then

Ei/'NE#0 (since E' is an essential extension of E)
= (EfNE)NM #0 (

= Y((E)NE)N M) #0 (since ¢ is one-to-one)

= Y(E]NE)NM #0 (since ¢ is one-to-one again)

= Y(E)NM#0.

since E is an essential extension of M)

Thus Im is an essential extension of M. Then Imy € ¥ with £ C Imt and this
contradicts the fact that F is a maximal element in . Hence E has no proper essential
extension. Therefore, F is a injective hull of M.

For (2), since I is an injective R-module, there exists an R-module homomorphism
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¢ : E — I such that the diagram

is commutative. Because ¢|y = f, M NKer¢ = Ker f = 0. Then Ker ¢ = 0 since E is
an essential extension of M.

For (3), by (2), there exists an R-module monomorphism ¢ : £ — E’ such that the
diagram

M—"~E

|/

i
is commutative. Thus Im ¢ = E. Because Im ¢ is injective and Im ¢ is a submodule of
E', Im ¢ is a direct summand of E’, i.e., there exists a submodule F," of E’ such that
E/'NIm¢ =0 and E' = Im ¢ + E;’. Moreover, we have E;" N M = 0 since M C Im ¢.
Therefore, by the fact that E’ is an essential extension of M, E;’ = 0. Hence Im ¢ = £’

and so ¢ is indeed an R-module isomorphism. O

Definition 3.2.7. Let M be an R-module.

(1) AssM = {p € Spec(R) | there is an R—module monomorphismf : R/p — M}. If

p € AssM, p is said to be an associate prime of M.

(2) M is said to be decomposable if there exist two nonzero submodules My, My
of M such that My N My = 0 and M = M; & Msy. Otherwise, M is said to be

indecomposable.

In the next proposition, we will show that an R-module M is indecomposable injective
if and only if M = E(R/p) for some p € Spec(R). Before we prove Proposition 3.2.9,

we present a lemma that we need in the proof.
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Lemma 3.2.8. Let M be a nonzero R-module. Then AssM is nonempty.

Proof. Since M # 0, we consider the set ¥ = {Ann(m) | m € M, m # 0}. Because R is a
Noetherian ring, ¥ has a maximal element. Let Ann(x) be a maximal element in ¥. Now
we show that Ann(x) is a prime ideal. Suppose ab € Ann(z). Then (ab)x = 0. Thus we
have a(bx) = 0, and so a € Ann(bx). Note that if bx = 0, then b € Ann(x). On the other
hand, if bx # 0, then Ann(bx) € 3. However, we know that Ann(z) C Ann(bx), so by
maximality of Ann(z), Ann(x) = Ann(bx) and so a € Ann(x). Hence Ann(x) is a prime
ideal. Moreover, let f : R — M be the R-module homomorphism defined by f(r) = rx
for all r € R. Because Ann(z) = Ker f, there exists an R-module monomorphism

¢ : R/Ann(x) — M. Therefore, Ann(x) € AssM and the proof is complete. O

Proposition 3.2.9. A nonzero R-module M 1is indecomposable injective if and only if

M = E(R/p) for some p € Spec(R).

Proof. Suppose M is a nonzero indecomposable injective R-module. Because M # 0,
AssM is nonempty. Let p € AssM. Then p € Spec(R) and there is an R-module
monomorphism f : R/p — M. By Lemma 3.2.6 (2), there exists an R-module monomor-

phism ¢ : E(R/p) — M such that the diagram

0—=R/p——=E(R/p)

/|

M

is commutative. Because E(R/p) is injective, there is a submodule M’ of M such that

M = E(R/p) & M’'. By the fact that M is indecomposable, we have M’ = 0 and so
M = E(R/p).

Conversely, suppose M = E(R/p) for some p € Spec(R). Since E(R/p) is injective, it
remains to show that F(R/p) is indecomposable. Suppose that E(R/p) is decomposable.
Then there exist nonzero submodules M; and M, of E(R/p) such that M; N M, = 0 and
E(R/p) = My + My. We take N; = R/p N M; and Ny = R/p N M,. Because E(R/p)
is an essential extension of R/p, N7 # 0 and Ny # 0. On the other hand, since R/p
is an integral domain, Ny Ny # 0 as ideals in R/p. Because NNy C Ny N No, we have
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Ny N Ny # 0 and so My N My # 0. This contradicts the fact that M; N My = 0. Hence
E(R/p) is indecomposable. This completes the proof. O

From Proposition 3.2.9, we know that every nonzero indecomposable injective R-
module is of the form E(R/p) for some p € Spec(R). In Proposition 3.2.11, we will
show that every nonzero injective R-module is a direct sum of indecomposable injective

R-modules. In the proof of Proposition 3.2.11, we will use the following lemma.

Lemma 3.2.10. Let {M; | j € J} be a family of R-modules. Then €D, ; M; is injective
if and only if M; s injective for every j € J.

Proposition 3.2.11. Let I be a nonzero injective R-module. Then I is a direct sum of

indecomposable injective R-modules.

Proof. Because I # 0, Assl is nonempty by Lemma 3.2.8. Let p € Assl, ie., p €
Spec(R) and there is an R-module monomorphism f : R/p — I. By Lemma 3.2.6 (2),
there exists an R-module monomorphism ¢ : E(R/p) — I such that the diagram

0—=R/p——~E(R/p)

1
1
is commutative. Then we can consider E(R/p) as a submodule of I. Let

¥ ={S={E;|j€ J}|E;is an indecomposable injective submodule of I for every
J € J and @jeJ E; = ZjeJ EJ’}'
Since F(R/p) C I, S ={E(R/p)} € ¥ and so ¥ is nonempty. Now we show that every
chain in 3 has an upper bound. Let C = {S;, | k € K} be a chain of ¥. We claim that
S = Upex Sk isin 3. Since every element in S is an indecomposable injective submodule
of I, it remains to show Ppce B =D peg L ie, EN Y pegpup ' =0foral B e S.
Let £ € Sandlet a € EN Y pegpupl’. Then a = Y0 e, for some e, € E,
E;/ € S\{E}. Because C is a chain, there exists S;, € C such that £ € Sy and E;’ € S},
forall i = 1,2,---,n. Thus ENY." B/ = 0 and so we have that a = 0. Therefore,
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ENY pespep B =0and so C = {S, | k € K} has an upper bound S = [y, S-
By the Zorn’s Lemma, ¥ has a maximal element. Let S; = {E; | j € J} be a maximal
element in 3. Now we show that I = €@ ies Fj. Because Ej is an injective submodule
of I for every j € J, @jej
there exists a submodule I; of I such that I; N @jeJ E;,=0and I =1 + (®jeJ Ej).
Ej). We

E; is an injective submodule of I by Lemma 3.2.10. Thus

By Lemma 3.2.10 again, [; is injective since [ is injective and [ = I; ¢ (@jeJ
claim that I; = 0. Suppose I # 0. By Lemma 3.2.8, Assl; is nonempty. Therefore
there exists p; € Assl, i.e., p1 € Spec(R) and there is an R-module monomorphism
fi: R/p1 — 1. Moreover, because [; is injective, by Lemma 3.2.6 (2), there exists an

R-module monomorphism ¢; : E(R/p1) — I, such that the diagram

0—>R/P1L>E(R/P1)
f1l t
L

is commutative. Hence we can consider F(R/p1) as a submodule of I;. Because I; N
(B, Ei) =0, E(R/p1) N (B, E;) = 0. Thus S; U{E(R/p1)} € ¥ and S; C
S;U{E(R/p1)}. This contradicts the fact that S; is a maximal element in ¥. Hence

I =0and so I =@,_; E;. This completes the proof. O

jeJ

From Proposition 3.2.9 and Proposition 3.2.11, we see that a nonzero injective R-
module [ is a direct sum of E(R/p) for some p € Spec(R). In the next lemma, we will
show that H'(— ® C) = T'pu(—), ie., H(A® C) = T'y(A) for all R-module A.

Lemma 3.2.12. Let A be an R-module and assume the ideal x = (x1,T9,...,2,) i
m-primary. Then H'(A® C) = Tn(A), where C is the Cech complex with respect to the

SEqUENCe T1, X, ..., Tp.

Proof. Because R is a Noetherian local ring with the maximal ideal m and x =
(x1,22,...,2,) is m-primary, m* C x C m for some s > 0. Then it is not difficult
to check that

I'm(A) ={y € A|x"y =0 for some k >0} .
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Using the facts: AQ R= A, A® (P, R.,)) =D ,(ARR,,), and A® R,, = A,, for

alli =1,2,--- ,n, we see that

n

H(A®C)=Ker(A® R — A® (P R.,)) %Ker(A%éAxi).

i=1 i=1

Now we show that I'y(A) = Ker (A — @, As,)-

o Let y € Tim(A). Then x*y = 0 for some k > 0. So we have ¥y = 0 for all
i=1,2,---,n. Therefore, (£,%,... %) =0in @, A, and so y € Ker (A —

11 01
D, A;,). Hence I'y(A) € Ker (A — B, A.)).
o Conversely, let a € Ker(A — ., A;,). Then ($,%,---,4) = 0in P, A,
Therefore, for each i = 1,2,--- ,n, there exists t; € N such that x’;ia = 0. Take

t = > ti, then x'a = 0 and so we have that a € I'y,(4). Hence Ker (A —
Dim1 Ar) € Tm(A).

Therefore I'yy(A) = Ker (A — @}, A,,). Hence H°(A ® C) = I'iy(A) and the proof is

complete. O

3.3 Cech complexes vs universal connected sequences

In Theorem 3.3.5, we will show that {H"(— ® C), E"},>0 is a universal connected se-
quence. Before we prove Theorem 3.3.5, we present some lemmas that we need in the

proof.

Lemma 3.3.1. Let M be an R-module and let S be a multiplicative closed set in R.

Then as Rg-modules, E(M)g is an essential extension of Mg.

Proof. It suffices show that Rgz N Mg # 0 for all nonzero © € E(M)s. Because
x € E(M)s, v = - for some y € E(M) and s; € S. It is not difficult to check that

RS{L’: ng.
Since x # 0 in E(M)g, ty # 0 for all ¢t € S. We consider the set
Y ={Ann(sy)|s € S}.
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Because R is a Noetherian ring, ¥ has a maximal element. Let Ann(ty) with ¢ € S be a

maximal element in X. Then we have that

Rsl':RSy:Rsty.

Since E(M) is an essential extension of M and since ty # 0, R(ty) N M = I(ty) # 0,
where [ = (M :g ty) is an ideal of R. Again by the fact that R is a Noetherian ring,
I = (ay,a9, - ,a,) for some elements a,as, - ,a, € R. Now we show that there
exists a; such that s[a;(ty)] # 0 for all s € S. Suppose that for each i = 1,2,--- n,
there exists s; € S such that s;[a;(ty)] = 0. Take s = [[_, s;, then s[a;(ty)] = 0
for all ¢ = 1,2,--- ,n. Thus we have that a; € Ann(sty) for all i = 1,2,--- ;n. On
the other hand, since Ann(ty) C Ann(sty) and since Ann(ty) is a maximal element in
Y, Ann(ty) = Ann(sty). So we get a; € Ann(ty) for all i = 1,2,--- n. Therefore,
I C Ann(ty), i.e., I(ty) = 0. It contradicts to I(ty) # 0, so there exists a; such that
slai(ty)] # 0 for all s € S. Hence @ € (R(ty)NM)s = Rs(ty) N Mg = Rsz N Mg and
@ #0in E(M)g. Therefore, Rgx N Mg # 0 for all nonzero x € E(M)s. O

Lemma 3.3.2. Let p € SpecR and let y € R.

(1) Ify € p, then E(R/p), = 0.

(2) Ify ¢ p, then yE(R/p) = E(R/p).

Proof. For (1), because y € p, (R/p), = 0. By Lemma 3.3.1, E(R/p), is an essential
extension of (R/p),. Therefore E(R/p), = 0.

For (2), consider the R-module homomorphism f : E(R/p) — E(R/p) defined by
f(a) = ya for all a € E(R/p). Now we claim that f is one-to-one, i.e., Ker f = 0.
Suppose Ker f # 0. Because Ker f is a nonzero submodule of E(R/p) and E(R/p)
is an essential extension of R/p, Ker f N R/p # 0. However for a € Ker f N R/p,
a =r+p for some r € R. Thus 0 = f(a) = f(r +p) = yr + p, and so we have
yr € p. Since p is a prime ideal and since y ¢ p, r € p, i.e., a =r+p = 0in R/p.
Hence Ker f N R/p = 0 and we get a contradiction. Thus Ker f = 0, i.e., f is one-to-
one. By the First Isomorphism Theorem, E(R/p) = Im f = yFE(R/p). Then yE(R/p)
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is injective since E(R/p) is injective. Moreover, because yE(R/p) is a submodule of
E(R/p), yE(R/p) is a direct summand of E(R/p), i.e., there exists a submodule M; of
E(R/p) such that E(R/p) = yE(R/p) ® M,. However, E(R/p) is indecomposable, by
Proposition 3.2.9, so M; = 0. Therefore, yE(R/p) = E(R/p). O

Remark 3.3.3. In the proof of Lemma 3.3.2(2), we have that the R-module homomor-
phism f : E(R/p) — E(R/p), defined by f(a) = ya for all a € E(R/p), is one-to-one,
and Im f = yE(R/p). Therefore, for every a € E(R/p), there exists a unique element
b € E(R/p) such that a = yb. Similarly, because y ¢ p and p is prime, y* & p for all
s € N. Thus for every a € E(R/p) and for every s € N, there exists a unique element
b € E(R/p) such that a = y*b. In particular, if a € E(R/p) such that y*a = 0, then
a=0.

Notation 3.3.4. In the proof of Theorem 3.3.5, we need to use some special notations.
(1) Fort>1and1<iy <ig<...<iy <mn, welet ey, ; torepresent the component
. t . .
Ry aiyai, M C' =D 1ciy cipe.. civan Bai ey, - Hence, we can write
[ - — L
C - @1§i1<i2<...<it§n RwilmiQ"'%t - Zl§i1<i2<...<it§n RwilmiQ"'wit €iyig..i¢ -

Similarly, we also write

@19‘1 <ig<..<it<n E(R/p>mi1w¢2mmit = Zlgil <ig<..<ir<n E(R/p>mi1$i2"'mit Ciyig..igs

where p € Spec(R). We also use the convention that ej,j, ;, = €iyi,..i, as long as

{jlana s 7jt} - {ilaiQa s 7Z.t}-

(2) For two disjoint subsets X andY of {1,2,...,n}, we let §(X,Y) = (=1)%!, where
Z ={(a,b) € X xY | a < b}. Note that if X = X; U Xy is a disjoint union,
then Z = {(a,b) € X xY | a < b} = {(a,b) € Xy xY | a < b}U{(a,b) €
Xo XY | a < b} is adisjoint union and so §(X,Y) = 6(X1,Y)-6(Xs,Y). Moreover,
if i,j € {1,2,...,n} are distinct, then §({i},{j}) - 6({j},{i}) = —1. With this
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new notation, the component Ry, ..., — R that gives the differentiation

Tj1Tjo " Tjgq1”

dt - Ot — O™ can be rewritten as

5({7;1’ 7;27 s ait}a {]s}) -nat : inl---xit - (in1~~~xit)xjs Zf {jla cee 7jt+1} = {ila B 7it} U {]S} )

0 otherwise.

Recall that nat : inl.,.x.

it

— (Re,, zi, )y, 18 the natural R-module homomorphism
l

T :Ejsr
defined by Tra Y 7 G
Theorem 3.3.5. Let x1, x5, - ,x, € R such that the ideal x = (x1,x9,...,2,) is M-
primary and let C be the Cech complex with respect to the sequence x1, s, ..., %,. Then

{H'(— ®C), E'}1>0 is a universal connected sequence.

Proof. First of all, we show that {H'(— ® C), E'};>¢ is a connected sequence, i.e.,
(H'(-®C),E", H" (- ®()) is a connected pair for all t > 0. Let (a,3,7) : E — E'
be a morphism in the category &£, where £ : 0 = A - B — C — 0and E : 0 —
A" — B' — €' — 0 are two short exact sequences of R-modules. For all t = 0,1, --- ,n,

because the tth term C! in C is a flat R-module, the diagram

0—AR(C'——=B(C'——=C ® C'—=0
OC®1Ct ﬁ@lct 'Y®1ct

0—A®(C'—B @ (C'—C'® C'—0
is commutative with both rows exact. In other words, the diagram
0—A®C——BRC——C®C——0

a®le B®1c T®1c

0—ARC——B C——C"®C——0
is commutative. By Lemma 3.1.6, we have that the diagram
HYC ®C)—E~H"(A®C)

H'(v®1c) H't 1 (a®1c)

HY(C' 0 0)-LL a4 @ 0)
is commutative for all ¢ > 0. Hence (H'(—®C), E', H"™'(— ®()) is a connected pair for
all t > 0. Therefore, { H'(— ® C), E'};>0 is a connected sequence.
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Next, we show that {H'(— ® C), E'};>0 is universal. Let E:0 - A — B —-C — 0
be a short exact sequence of R-modules. For all t =0, 1,--- ,n, because the tth term C*

in C is a flat R-module, the sequence
0—ARC'—=B(C'—=C @ C'—=0
is exact. Hence the sequence of complexes

0 A®C BeC——C®C——0

is exact. By Lemma 3.1.5, there is a long exact sequence of cohomology
S HY(A®C) — H(B®C) — H(C®C) E HT (A®C) — - .

By Corollary 2.3.4, it remains to show that if I is an injective R-module, then H'(I ®
C) = 0 for all ¢ > 0. Let I be an injective R-module. From Proposition 3.2.9 and
Proposition 3.2.11, we know that I = @jEJ
prime ideals of R. Note that (@jeJ E(R/p))) ® A = Djcs (E(R/p;j) ® A) for all R-

E(R/pj), where {p; | j € J} is a family of

module A. Hence, we only need to take care of the case where I = E(R/p) for some p €
Spec(R). In other words, it suffices to show that if p € Spec(R), then H(E(R/p)®C) =0
for all ¢ > 0. We separate the discussion into two situations.

Suppose that p = m. Because the ideal x = (z1,xs,...,x,) iS m-primary, we have
T T oy, €Emifort > land 1 < iy < idp < ... < 4y < n. By Lemma 3.3.2 (1),
E(R/P)a; 2syaei, =0 fort > 1and 1 <4y < iy <...<i < n. Hence for all t > 1, we

have that

E(R/p) ® Ct = E(R/p) ® (@1§i1<i2<...<it§n inle"wit)

= @icicire.civan E(B/P)a wiya,
=0.

Therefore the complex F(R/p) ® C is
0— ER/p) - 0—0—---
and so H'(E(R/p) ® C) =0 for all t > 0.
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Suppose that p # m. Because m is the unique maximal ideal of R, p C m. Since
x = (21,%9,...,2,) is m-primary, there exists x; such that x; ¢ p. Now we fix the
index j and consider the natural R-module homomorphism ¢ : E(R/p) — E(R/p).;,
ie., t(a) = { forall a € E(R/p). Note that

a € Kert = % =0in E(R/p)s, = z;*a = 0in E(R/p) = a =0 in E(R/p),

where the last implication follows from Remark 3.3.3. Hence the natural R-module
homomorphism ¢ : E(R/p) — E(R/p)., is one-to-one. Moreover, since E(R/p) is an
injective R-module, there exists an R-module homomorphism g : E(R/p).; — E(R/p)
such that gt = 1gr/p). More precisely, by Remark 3.3.3, for all s € N and for all
a € E(R/p), there is a unique element b € E(R/p) such that x;°b = a. Thus for all
% € E(R/p)a;, a = x;°b for some b € E(R/p) and so

.S
Tj

ie., g(x‘;) = b where b € E(R/p) is such that a = x;°b. On the other hand, for all
t>22and 1 <y <ip <...< i1 <nwith i1,49,...,4_1 # j, g induces an R-module

homomorphism

Girjiz,.ig—1 - E(R/p)xilxiz“'xit,ld/‘j = (E(R/p)x]) - E(R/p)

Tiy Tig Tiy_q TiyLigTiyg_q°

Consider the identity cochain map
1: E(R/p)®@C — E(R/p)®C,

i.e., the commutative diagram

---——=F(R/p) ® Ct_l—)E(R/T ® C'—E(R/p) ® C'"T'—— ..
1 1 1 (1)
--——=E(R/p) ® C*"'—=E(R/p) ® C'——=E(R/p) ® C*T1—— .-,

where C* = @1, _ipe . civan By 2y s, - Since
E(R/p)® C* = E(R/p) ® (@1§i1<i2<...<it§n Rwilrizmrit)

= ®1§i1<i2<...<it§n (E(R/p) ® Rxﬁxizmxit)
= @l§i1<i2<...<it§n E(R/p)xilxiz“‘xit )
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the diagram (1) is just the diagram

”—>@E(R/p)xilmi2“'$it 1dt : @E(R/p)x”xzz @iy & @E(R/p)wilmiz---mit+l—>

1 1 1
—D E(R/p)xilmiz“'fbit 1 o =D E(R/p)x”xzz @y, T i —= D E(R/p)wilmiz---mitH —
(2)

We let ! be the composition of the canonical R-module homomorphism @, E(R/p).,

(R/p)xJ and g, i.e., for all @, . e @ E(R/P)s, 0 (@?_1 waii) _ g(x‘j_ﬂj), and
let " : 0 — E(R/P)syay.z, D€ the zero map, and for each t with 2 < ¢t < n, we define

}

the R-module homomorphism

o @1§i1<i2<...<it§n E(R/p>mi1$i2“'$it - @1§i1<i2<...<it,1§n E(R/p)milzvzg---mit,l

by giving on the component E(R/P)s; -z, — E(R/P)a; aj,z;, , t0 be

t

6({j1> cee ﬂjt—l}a {]}) . gi1,i2,...,it71 if {’éla ce 7it} = {jla s 7jt—l} U {]}7
0 otherwise.
Now we show that d'~to! +o'tld! = 1 for all t > 0. First, we show that d’c! + o%d' = 1,

i.e., the case of t = 1. Note that with the notation we mention in Notation 3.3.4, we have

@E R/p)a, ZE R/p)aei.

Hence, in order to show that d’c! + o?d' = 1, we only need to show that for all i =
1,2,...,n, (' + o*d")(ae;) = ae; for all a € E(R/p).,,. Let o5 € E(R/P)s,. 1 # j,
then
a
doal(x—ikei) =0.

Moreover, let L = {1,2,...,n}\ {i}. Then j € L and we have

P () = 0% (Ter 001} ) inen)
= P N ESres) + 0 (L) 01} {wh) Zten)
= S({i}, )R (Eteey) + 0
= 5({i} ) (O}, D) ees)

a
- xikela

49



where the third equality follows form the fact that j ¢ {i,w} for all w € L\ {j}. Hence
(0" + 0*d")(rei) = ;%ei. If i = j, let b € E(R/p) such that 2;%b = a. Then

a 2 xkb
dogl(ﬁ = do Z —€; = ZZ:; Fe,
Moreover, let X ={1,2,...,n}\ {j}. Then
o' (re;) = 0% (Xuex 0({5}, {w})% ju)
= ZweX o({j}, {w})o (I;U xxj 5 eyw)

= Yuex 0 {whs({w}, {j})2te
= ZweX(_l) : aujcbew-

Hence (d%c! + Uzdl)(%ej) = rej. Therefore, d’c! + o?d" = 1. On the other hand, for

all o5 € E(R/P)a1zy-a,, let b € E(R/p) such that z;*b = a, then
"E‘k
(d o™ + Unﬂd")(m@m ..... n) = dn_lU"(mem ..... n)

= dn_l(é(Xa {J}) T 123+1 Z)FCL j—l,j+1...,n)
. x; ky
= 5(X7 {J}) (X {]})mel,z ..... n

a
= (mizg-mn)F €1,2,...n

Hence d" 10" + oc"*1d™ = 1. Therefore, we have d' ‘o' +o'*'d* =1 fort =1 and t = n.
Next, we show that d*~'o? +o!t'd! = 1 for all 2 <t < n—1. Note that with the notation

we mention in Notation 3.3.4(1), we have that

@1§i1<i2<...<it§n E(R/p)xilxiz'“l‘it = Zl§i1<i2<...<it§n E(R/p)l‘ilxizmxit Ciyig..ig-

Hence, in order to show that d~'o! + o**1d" = 1, we only need to show that for all 1 <

i <idp < ...<i <m, (d7 ot +ot dY) (e, i) = ey, foralla € E(R/p)

Tiy Tig Ty
We separate our discussion into two cases.

Case 1: j & {iq,49,...,1;}. Let W € E(R/P)a; xsy-as,- Since j & {i1,ig, ..., i},
we have
dt—lat( a

(xlleQ oo

=d"(0) = 0.

€i1i2...it)
xit)k
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Let J={1,2,...,n}\ {i1,d2,...,4%}. Then j € J and we have

O'H_ldt(meili? it)
= 0" (Xes 0 iz, i}, WDW’WMM)

= o™ (0({ir, iz, it} {j})(””n—%xe

T )k 1112.. th)

+Ut+1(ZwEJ\{j} S({i1, 2, ..., 0}, {w})—(% mw;jtmw)k@ilig...itw)

.CB,LQ

X ka
= 0({ir, 72, i}, {j})o Hl(#.)keiliz...itj) +0

mzl :B’LQ it

= 6({ir,ia, .. 0}, {5} - (0({in, 40, 0t} {J}) @i,

e e
(wilmiQ"'fEit)k 2122...2¢

Cii.it)
557,2 -'Eit)k 11%9...1¢

where the third equality follows form the fact that j ¢ {i1,4s,...,4;, w} for allw € J\{j}.

t—1 -t t+1 gt a . ) = a 5. .
Hence (d o'+ o' d )(4(9611:02250%)’“ ezlzg...zt) (@iy @iy 2, ) €iyig...iy-

Case 2: j € {iy,49,...,4t}, 1.€., j =i, for some m € {1,2,...t}. We let

U= {ivis,oyi}, Un = U\ {im}, V= {1,2, ..., 0} \ U, and Vi, = {1,2, .., 0} \ Un.
Let 2% € E(R/P)z; 0y, and let b € E(R/p) such that z;*b = a. Then
i1 Lig it t
d1ot ((m 0, i, )F Citia.. it)
21 12 Zt
= dt 1( Umv{j} (@i, - mim712im+1,,,xit)kei1~..im71im+1...it)
T
= 5(Uma {]}) ( Zwevm (Um> {w}) (:cil--wim,lxim:"':cit:cw)k eil---im—1im+1...itw)

. . :Ejk
= 0(Un,{j}) - 6(Un, {J})(%,,,m. , ° ) €i1...im,1im+1...itj)

tTm—1 wlerl

. Z‘wk
+ Zwevm\{j} 5(Uma {]}) ’ 5(Um> {'LU}) (iyxi,, . : i, T )F Citim—1imt1..dtw

—1%imp1

a - mwk
= (@i, @iy iy )F Cirin...iy T ZwEV 5(Um7 {j}>5(Um7 {w}) (@20 . - i w)F €1 i 10m 1 - dw

tTm—1 wlerl

i+l gt a
o d((xi1x¢2~~~xit)’“62”2"'“)

k
- O't“(ZweM(U, {w})meiliz...uw)
wk kb
= Duev (U {w})o tH(Weilig...uw)
. k
= Y uer U Aw}) - 6(Un U {w}, {1}) a2 57 € i rim 1 v
( i1 Gy — it )

1 Pim41
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Note that for all w € V, we have

o(U,{w}) - (U U {w}, {j})

(6(Um, {wh)o ({5}, {w})) - (6(Um, {710 ({w},{5}))
= 0(Un; {w})0(Unm, {73})({s}, {w})o({w}, {7})

= (=1) - 0(Un, {w})d(Unm, {j})-

Hence (d"~'o! + o1d") (—2—e ) i

(xilxiz“'xit)k irig.it) = (xilxiz"'xit)keilh"'it'

Thus d'~ o' +o*T1d" =1 for all t > 0. Hence by Definition 3.1.1 (1), the cochain map

@D ER/p)ei— B E(R/P)a; 2iy—> - —= D E(R/P)a, as, ,—E(R/P)syy—0

1 1 1 1
is null homotopic. Hence by Remark 3.1.2, the induced map 1* : H'(E(R/p) ® C) —

HY(E(R/p) ® C) is the zero map for all t > 0. Therefore H'(E(R/p) @ C) = 0 for all

t > 0, and this completes the proof. O

Theorem 3.3.6. Let x1, 9, - ,x, € R such that the ideal x = (x1,%2,...,%,) is m-
primary and let C be the Cech complex with respect to the sequence x1, s, ..., %,. Then

HL (A) 2 H(A®C), for all R-modules A and t > 0.

Proof. By Theorem 3.1.10, { HL,(—), E'};>0 is a universal connected sequence with initial
H2 (=) = T'm(—). By Theorem 3.3.5, {H!(— ® C), E'};>¢ is also a universal connected
sequence. Moreover, from Lemma 3.2.12, we have that H°(— ® C) = I'iy(—). Therefore,
by Lemma 2.3.5, H: (A) &2 H'(A®C) for all R-modules A and ¢t >0. O
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