國立臺灣師範大學數學系碩士班碩士論文

指導教授：劉容真
博士

Local Cohomology and Čech Complexes

研 究 生：陳韋達

中華民國九十八年六月

致 謝

在研究所的這些日子以來，不管是在生活上還是課業上，都受到老師許多的照顧與鼓勵。雖然在求學當中遇到些許的瓶頸，但老師總在許多方面給我建議與支持，讓我能夠一步步地往自我的目標邁進。在此，非常感謝老師這些年來的諄諄教誨，再次獻上我最誠摯的感謝。

在這份論文完成的同時，感謝所有幫助過我的同學以及師長，不管是在學業上還是生活上，我都獲得很大的啓發。首先，感謝我的指導老師一劉容真教授，在專業的領域上，給予我適時地引導以及啓發；在論文的撰寫上，也給我不斷地指導與幫助；在與指導老師不斷的討論當中，提醒了我所忽略的細節，讓我的思維更爲細倵。此外，也要感謝口試委員—洪有情教授與林惠雯教授，感謝兩位教授在百忙之中抽空給予指導，有教授寶貴的建議，才能使得本論文的內容更加完備。另外，感謝我的同窗好友們一典匡和盈孜，在求學的路上有你們的陪伴，互相支持與鼓勵之下，讓我覺得倍感溫馨。在求學的道路上，不只是辛苦，還有彼此之間的友誼。最後要感謝我的家人，給我支持與鼓勵。無論遇到任何困難，總是支持著我，讓我能全心全意的撰寫論文。在此，我再次由衷地感謝所有幫助過我的老師，家人與同學們。

Contents

1 Introduction 1
2 Connected Pairs and Connected Sequences 3
2.1 Preliminaries 3
2.2 Connected pairs 9
2.3 Connected sequences and universal connected sequences 16
3 Local Cohomology and Čech Complexes 21
3.1 Local cohomology vs universal connected sequences 21
3.2 Injective hulls 34
3.3 Čech complexes vs universal connected sequences 43
References 53

1 Introduction

Through out this thesis, (R, \mathbf{m}, k) is a Noetherian local ring with maximal ideal m. Let A be an R-module and define

$$
\Gamma_{\mathbf{m}}(A)=\left\{y \in A \mid \mathbf{m}^{k} y=0 \text { for some } k \geq 0\right\} .
$$

It is not difficult to check that $\Gamma_{\mathbf{m}}(-)$ is a left exact additive functor on the category of R-modules. The right derived functor associate to $\Gamma_{\mathbf{m}}(-)$, denoted by $H_{\mathbf{m}}^{n}(-)$, is called the local cohomology functor. In other words, take an injective resolution \mathcal{I} of A and delete A, then we get a cochain complex $\Gamma_{\mathbf{m}}(\mathcal{I})$ by applying the functor $\Gamma_{\mathbf{m}}$ to every term in \mathcal{I}. Then $H_{\mathbf{m}}^{n}(A)$ is the nth cohomology associate to $\Gamma_{\mathbf{m}}(\mathcal{I})$, i.e., $H_{\mathbf{m}}^{n}(A)=H^{n}\left(\Gamma_{\mathbf{m}}(\mathcal{I})\right)$.

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sequence of elements of R. The Čech complex with respect to the sequence $x_{1}, x_{2}, \ldots, x_{n}$ is a cochain complex

$$
\mathcal{C}: 0 \rightarrow C^{0} \xrightarrow{d^{0}} C^{1} \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} C^{n} \longrightarrow 0
$$

where $C^{t}=\bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} R_{x_{i_{1}} x_{i_{2}} \ldots x_{i_{t}}}$ and $C^{0}=R$, and the differentiation $d^{t}: C^{t} \rightarrow$ C^{t+1} is given on the component $R_{x_{i_{1}} \ldots x_{i t}} \rightarrow R_{x_{j_{1}}} x_{j_{2}} \cdots x_{j_{t+1}}$ to be

$$
\left\{\begin{array}{l}
(-1)^{s-1} \cdot \text { nat }: R_{x_{i_{1}} \cdots x_{i_{t}}} \rightarrow\left(R_{x_{i_{1}} \cdots x_{i_{t}}}\right)_{x_{j_{s}}} \text { if }\left\{i_{1}, \ldots, i_{t}\right\}=\left\{j_{1}, \ldots, \hat{j}_{s}, \ldots, j_{t+1}\right\}, \\
0 \\
\text { otherwise } .
\end{array}\right.
$$

Note that nat : $R_{x_{i_{1}} \cdots x_{i_{t}}} \rightarrow\left(R_{x_{i_{1}} \cdots x_{i_{t}}}\right) x_{j_{s}}$ is the natural R-module homomorphism defined by $\frac{r}{\left(x_{i_{1}} \cdots x_{i_{t}}\right)^{l}} \mapsto \frac{x_{j_{s}}^{l} r}{\left(x_{i_{1}} \cdots x_{i_{t}} x_{j_{s}}\right)^{l}}$.

It is well-known that if the ideal $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is \mathbf{m}-primary, then we have

$$
H_{\mathbf{m}}^{t}(A) \cong H^{t}(A \otimes \mathcal{C})
$$

for all R-modules A and $t \geq 0$. In this thesis, we will give a proof with complete details for this isomorphism. In order to prove this isomorphism, we consider additive functors on the category of R-modules. In Chapter 2, we introduce connected pairs, connected sequences, and the definition of being universal for a connected sequence. We will also show that if two universal connected sequences $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ and $\left\{T^{\prime n}, E^{\prime n}\right\}_{n \geq 0}$ have the same initial $T^{0}=T^{\prime 0}$, then $T^{n}(A) \cong T^{\prime n}(A)$ for all R-module A and $n \geq 0$.

In Chapter 3, we first prove that $\left\{H_{\mathbf{m}}^{n}(-), E^{n}\right\}_{n \geq 0}$ is a universal connected sequence with initial $H_{\mathbf{m}}^{0}(-)=\Gamma_{\mathbf{m}}(-)$. We will also show that $\left\{H^{n}(-\otimes \mathcal{C}), E^{n}\right\}_{n \geq 0}$ is a universal connected sequence with initial $H^{0}(-\otimes \mathcal{C})=\Gamma_{\mathbf{m}}(-)$. In order to show $H^{n}(-\otimes \mathcal{C})$ is universal, we make two important observations: any nonzero injective R-module is a direct sum of indecomposable injective R-modules, and an indecomposable injective R module is isomorphism to an injective hull of R / \mathbf{p} for some $\mathbf{p} \in \operatorname{Spec}(R)$. Finally we use what we prove in Chapter 2 to see that $H_{\mathbf{m}}^{n}(A) \cong H^{n}(A \otimes \mathcal{C})$ for all R-module A and $n \geq 0$.

2 Connected Pairs and Connected Sequences

2.1 Preliminaries

Before introducing connected pairs and connected sequences, we consider the category \mathcal{E} whose objects are short exact sequences of R-modules $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and whose morphisms are triple R-module homomorphisms $(\alpha, \beta, \gamma): E \rightarrow E^{\prime}$ such that the diagram

is commutative, where $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $E^{\prime}: 0 \rightarrow A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime} \rightarrow 0$ are two objects, i.e., two short exact sequences of R-modules.

Definition 2.1.1. Let $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $E^{\prime}: 0 \rightarrow A \rightarrow B^{\prime} \rightarrow C \rightarrow 0$ be two short exact sequences. We say that E is congruent to E^{\prime} if there is a morphism $\left(1_{A}, \delta, 1_{C}\right): E \rightarrow E^{\prime}$ in \mathcal{E}, i.e., there exists an R-module homomorphism $\delta: B \rightarrow B^{\prime}$ such that the diagram

is commutative.

Remark 2.1.2.

(1) In Definition 2.1.1, because $\left(1_{A}, \delta, 1_{C}\right): E \rightarrow E^{\prime}$ is a morphism in the category \mathcal{E}, δ is an isomorphism by the Five Lemma. Thus there exists an R-module isomorphism $\delta^{-1}: B^{\prime} \rightarrow B$ such that $\delta \delta^{-1}=1_{B^{\prime}}$ and $\delta^{-1} \delta=1_{B}$. Then $\left(1_{A}, \delta^{-1}, 1_{C}\right): E^{\prime} \rightarrow E$ is a morphism in \mathcal{E}, i.e.,the diagram

is commutative. Hence if E is congruent to E^{\prime}, then E^{\prime} is congruent to E.
(2) Let $E: 0 \rightarrow A \xrightarrow{\sigma} B \xrightarrow{\tau} C \rightarrow 0$ be a split short exact sequence. Then there exists an R-module homomorphism $f: B \rightarrow A$ such that $f \sigma=1_{A}$. Suppose $E^{\prime}: 0 \rightarrow A \xrightarrow{\sigma^{\prime}} B^{\prime} \xrightarrow{\tau^{\prime}} C \rightarrow 0$ is a short exact sequence that is congruent to E. Then there exists an R-module homomorphism $\delta: B \rightarrow B^{\prime}$ such that the diagram

is commutative. By (1), we have an R-module homomorphism $\delta^{-1}: B^{\prime} \rightarrow B$ such that $\delta \delta^{-1}=1_{B^{\prime}}, \delta^{-1} \delta=1_{B}$ and the diagram

is commutative. We take $f^{\prime}: B^{\prime} \rightarrow A$ to be the composition of the homomorphisms $B^{\prime} \xrightarrow{\delta^{-1}} B \xrightarrow{f}$ A, i.e., $f^{\prime}=f \delta^{-1}$. Therefore, $f^{\prime} \sigma^{\prime}=f \delta^{-1} \sigma^{\prime}=f \sigma=1_{A}$. Hence if E is split and E^{\prime} is congruent to E, then E^{\prime} is also split.

Lemma 2.1.3. Let $E: 0 \rightarrow A \xrightarrow{\sigma} B \xrightarrow{\tau} C \rightarrow 0$ be a short exact sequence. Suppose $\alpha: A \rightarrow A^{\prime}$ is an R-module homomorphism. Then there is a short exact sequence $E^{\prime}: 0 \rightarrow A^{\prime} \xrightarrow{\sigma^{\prime}} B^{\prime} \xrightarrow{\tau^{\prime}} C \rightarrow 0$ and an R-module homomorphism $\beta: B \rightarrow B^{\prime}$ such that the diagram

is commutative, i.e., $\lambda\left(\alpha, \beta, 1_{c}\right): E \rightarrow E^{\prime}$ is a morphism in \mathcal{E}. Moreover, the pair $\left(\lambda, E^{\prime}\right)$ is unique up to a congruence of E^{\prime}.

Proof. We want to find an R-module B^{\prime} and R-module homomorphisms $\sigma^{\prime}, \tau^{\prime}, \beta$ such that $E^{\prime}: 0 \rightarrow A^{\prime} \xrightarrow{\sigma^{\prime}} B^{\prime} \xrightarrow{\tau^{\prime}} C \rightarrow 0$ is exact and the diagram

is commutative. Take $B^{\prime}=\left(A^{\prime} \oplus B\right) / N$, where $N=\left\{(-\alpha(a), \sigma(a)) \in A^{\prime} \oplus B \mid a \in A\right\}$. Let σ^{\prime} be the composition of the natural homomorphisms $A^{\prime} \rightarrow A^{\prime} \oplus B \rightarrow\left(A^{\prime} \oplus B\right) / N=$ B^{\prime}, i.e., $\sigma^{\prime}: A^{\prime} \rightarrow B^{\prime}$ is the homomorphism defined by $\sigma^{\prime}\left(a^{\prime}\right)=\left(a^{\prime}, 0\right)+N$ for all $a^{\prime} \in A^{\prime}$; let β be the composition of the natural homomorphisms $B \rightarrow A^{\prime} \oplus B \rightarrow A^{\prime} \oplus B / N=B^{\prime}$, i.e., $\beta: B \rightarrow B^{\prime}$ is the R-module homomorphism defined by $\beta(b)=(0, b)+N$ for all $b \in B$. Also, because N is contained in the kernel of the composite $A^{\prime} \oplus B \rightarrow B \xrightarrow{\tau} C$, we have an induced R-module homomorphism $\tau^{\prime}:\left(A^{\prime} \oplus B\right) / N=B^{\prime} \rightarrow C$ with $\tau^{\prime}\left(\left(a^{\prime}, b\right)+N\right)=\tau(b)$ for all $\left(a^{\prime}, b\right)+N \in B^{\prime}$.

We first show that E^{\prime} is exact. Note that

- because σ is one-to-one, it is not difficult to see that σ^{\prime} is also one-to-one;
- because τ is onto, it is not difficult to check that τ^{\prime} is also onto;
- because $\tau^{\prime} \sigma^{\prime}\left(a^{\prime}\right)=\tau^{\prime}\left(\left(a^{\prime}, 0\right)+N\right)=\tau(0)=0$ for all $a^{\prime} \in A^{\prime}$, we have $\operatorname{Im} \sigma^{\prime} \subseteq \operatorname{Ker} \tau^{\prime}$.

Therefore, it remains to check that $\operatorname{Ker} \tau^{\prime} \subseteq \operatorname{Im} \sigma^{\prime}$. Let $\left(a^{\prime}, b\right)+N \in \operatorname{Ker} \tau^{\prime}$. Then $\tau(b)=\tau^{\prime}\left(\left(a^{\prime}, b\right)+N\right)=0$, so $b \in \operatorname{Ker} \tau$. Because E is exact, $\operatorname{Ker} \tau=\operatorname{Im} \sigma$ and so $b=\sigma\left(a_{1}\right)$ for some $a_{1} \in A$. Then $\left(a^{\prime}, b\right)+N=\left(a^{\prime}, \sigma\left(a_{1}\right)\right)+N$. Moreover, because $\left(a^{\prime}, \sigma\left(a_{1}\right)\right)-\left(a^{\prime}+\alpha\left(a_{1}\right), 0\right)=\left(-\alpha\left(a_{1}\right), \sigma\left(a_{1}\right)\right) \in N$, we have $\left(a^{\prime}, b\right)+N=\left(a^{\prime}, \sigma\left(a_{1}\right)\right)+N=$ $\left(a^{\prime}+\alpha\left(a_{1}\right), 0\right)+N=\sigma^{\prime}\left(a^{\prime}+\alpha\left(a_{1}\right)\right) \in \operatorname{Im} \sigma^{\prime}$. Hence $\operatorname{Ker} \tau^{\prime} \subseteq \operatorname{Im} \sigma^{\prime}$ and so E^{\prime} is exact.

Next, we show that the diagram (1) is commutative, i.e., $\beta \sigma=\sigma^{\prime} \alpha$ and $\tau^{\prime} \beta=1_{C} \tau$.

- Because $\beta \sigma(a)-\sigma^{\prime} \alpha(a)=[(0, \sigma(a))+N]-[(\alpha(a), 0)+N]=(-\alpha(a), \sigma(a))+N=N$ for all $a \in A, \beta \sigma=\sigma^{\prime} \alpha$.
- Because $\tau^{\prime} \beta(b)=\tau^{\prime}((0, b)+N)=\tau(b)=1_{C} \tau(b)$ for all $b \in B, \tau^{\prime} \beta=1_{C} \tau$.

Hence the diagram (1) is commutative, i.e., $\lambda\left(\alpha, \beta, 1_{C}\right): E \rightarrow E^{\prime}$ is a morphism in the category \mathcal{E}.

Finally, we show the uniqueness of the pair $\left(\lambda, E^{\prime}\right)$. Suppose that $E_{1}^{\prime}: 0 \rightarrow A^{\prime} \xrightarrow{\sigma_{1}^{\prime}}$ $B_{1}^{\prime} \xrightarrow{\tau_{1}^{\prime}} C \rightarrow 0$ is a short exact sequence and $\beta_{1}: B \rightarrow B_{1}^{\prime}$ is an R-module homomorphism
such that $\lambda_{1}\left(\alpha, \beta_{1}, 1_{C}\right): E \rightarrow E_{1}^{\prime}$ is a morphism in \mathcal{E}, i.e., the diagram

is commutative. Consider the R-module homomorphism $\phi: A^{\prime} \oplus B \rightarrow B_{1}^{\prime}$ defined by $\phi\left(a^{\prime}, b\right)=\sigma_{1}^{\prime}\left(a^{\prime}\right)+\beta_{1}(b)$ for all $\left(a^{\prime}, b\right) \in A^{\prime} \oplus B$. Note that for all $a \in A, \phi\left(-\alpha\left(a^{\prime}\right), \sigma(a)\right)=$ $-\sigma_{1}^{\prime}(\alpha(a))+\beta_{1}(\sigma(a))=0$, since $\sigma_{1}^{\prime} \alpha=\beta_{1} \sigma$. Thus $N \subseteq \operatorname{Ker} \phi$ and so ϕ induces an R module homomorphism $\delta: B^{\prime}=\left(A^{\prime} \oplus B\right) / N \rightarrow B_{1}^{\prime}$ with $\delta\left(\left(a^{\prime}, b\right)+N\right)=\sigma_{1}^{\prime}\left(a^{\prime}\right)+\beta_{1}(b)$ for all $\left(a^{\prime}, b\right)+N \in B^{\prime}$. We claim that $\left(1_{A^{\prime}}, \delta, 1_{C}\right): E^{\prime} \rightarrow E_{1}^{\prime}$ is a morphism in \mathcal{E}, i.e., the diagram

is commutative. We only need to show $\delta \sigma^{\prime}=\sigma_{1}^{\prime}$ and $\tau_{1}^{\prime} \delta=\tau^{\prime}$.

- Because $\delta \sigma^{\prime}\left(a^{\prime}\right)=\delta\left(a^{\prime}, 0\right)=\sigma_{1}^{\prime}\left(a^{\prime}\right)$ for all $a^{\prime} \in A^{\prime}, \delta \sigma^{\prime}=\sigma_{1}^{\prime}$.
- Note that for all $\left(a^{\prime}, b\right)+N \in B^{\prime}$,

$$
\begin{aligned}
\tau_{1}^{\prime} \delta\left(\left(a^{\prime}, b\right)+N\right) & =\tau_{1}^{\prime}\left(\sigma^{\prime}\left(a^{\prime}\right)+\beta_{1}(b)\right) \\
& =\tau_{1}^{\prime} \sigma_{1}^{\prime}\left(a^{\prime}\right)+\tau_{1}^{\prime} \beta_{1}(b) \\
& \left.=0+\tau(b) \quad \text { (because } \tau_{1}^{\prime} \sigma_{1}^{\prime}=0 \text { and } \tau_{1}^{\prime} \beta_{1}=\tau\right) \\
& =\tau^{\prime}\left(\left(a^{\prime}, b\right)+N\right) .
\end{aligned}
$$

Thus $\tau_{1}^{\prime} \delta=\tau^{\prime}$.

Hence E is congruent to E^{\prime} and the proof is complete.

Lemma 2.1.4. Let $E: 0 \rightarrow A \xrightarrow{\sigma} B \xrightarrow{\tau} C \rightarrow 0$ be a short exact sequence. Suppose $\gamma: C^{\prime \prime} \rightarrow C$ is an R-module homomorphism. Then there is a short exact sequence $E^{\prime \prime}: 0 \rightarrow A \xrightarrow{\sigma^{\prime \prime}} B^{\prime \prime} \xrightarrow{\tau^{\prime \prime}} C^{\prime \prime} \rightarrow 0$ and an R-module homomorphism $\beta: B^{\prime \prime} \rightarrow B$ such that
the diagram

is commutative, i.e., $\theta\left(1_{A}, \beta, \gamma\right): E^{\prime \prime} \rightarrow E$ is a morphism in \mathcal{E}. Moreover, the pair $\left(\theta, E^{\prime \prime}\right)$ is unique up to a congruence of $E^{\prime \prime}$.

Proof. Similarly as Lemma 2.1.3, we want to find an R-module $B^{\prime \prime}$ and R-module homomorphisms $\sigma^{\prime \prime}, \tau^{\prime \prime}, \beta$ such that $E^{\prime \prime}: 0 \rightarrow A \xrightarrow{\sigma^{\prime \prime}} B^{\prime \prime} \xrightarrow{\tau^{\prime \prime}} C^{\prime \prime} \rightarrow 0$ is exact and the diagram

is commutative. Take $B^{\prime \prime}=\left\{\left(b, c^{\prime \prime}\right) \in B \oplus C^{\prime \prime} \mid \tau(b)=\gamma\left(c^{\prime \prime}\right)\right\}$, which is a submodule of $B \oplus C^{\prime \prime}$. Let $\bar{\sigma}$ be the composition of the R-module homomorphisms $A \xrightarrow{\sigma} B \rightarrow B \oplus C^{\prime \prime}$, i.e., $\bar{\sigma}: A \rightarrow B \oplus C^{\prime \prime}$ is the R-module homomorphism defined by $\bar{\sigma}(a)=(\sigma(a), 0)$ for all $a \in A$. Since E is exact, $\tau \sigma(a)=0=\gamma(0)$, so $(\sigma(a), 0) \in B^{\prime \prime}$. Therefore, we can define $\sigma^{\prime \prime}: A \rightarrow B^{\prime \prime}$ by $\sigma^{\prime \prime}(a)=(\sigma(a), 0)$ for all $a \in A$. Also, let $\tau^{\prime \prime}: B^{\prime \prime} \rightarrow C^{\prime \prime}$ be the composition of the natural homomorphisms $B^{\prime \prime} \rightarrow B \oplus C^{\prime \prime} \rightarrow C^{\prime \prime}$, i.e., $\tau^{\prime \prime}\left(b, c^{\prime \prime}\right)=c^{\prime \prime}$ for all $\left(b, c^{\prime \prime}\right) \in B^{\prime \prime}$, and let $\beta: B^{\prime \prime} \rightarrow B$ be the composition of the natural homomorphisms $B^{\prime \prime} \rightarrow B \oplus C^{\prime \prime} \rightarrow B$, i.e., $\beta\left(b, c^{\prime \prime}\right)=b$ for all $\left(b, c^{\prime \prime}\right) \in B^{\prime \prime}$.

We first show that $E^{\prime \prime}$ is exact.

- Because σ is one-to-one, it is clear that $\sigma^{\prime \prime}$ is also one-to-one.
- For each $c^{\prime \prime} \in C^{\prime \prime}$, since τ is onto and $\gamma\left(c^{\prime \prime}\right) \in C, \gamma\left(c^{\prime \prime}\right)=\tau(b)$ for some $b \in B$. Then $\left(b, c^{\prime \prime}\right) \in B^{\prime \prime}$ and $\tau^{\prime \prime}\left(b, c^{\prime \prime}\right)=c^{\prime \prime}$. Hence $\tau^{\prime \prime}$ is onto.
- Because $\tau^{\prime \prime} \sigma^{\prime \prime}(a)=\tau^{\prime \prime}(\sigma(a), 0)=0$ for all $a \in A, \operatorname{Im} \sigma^{\prime \prime} \subseteq \operatorname{Ker} \tau^{\prime \prime}$.
- Let $\left(b, c^{\prime \prime}\right) \in \operatorname{Ker} \tau^{\prime \prime} \subseteq B^{\prime \prime}$. Then $c^{\prime \prime}=\tau^{\prime \prime}\left(b, c^{\prime \prime}\right)=0$. Also by the definition of $B^{\prime \prime}$, we have $\tau(b)=\gamma\left(c^{\prime \prime}\right)=\gamma(0)=0$, i.e., $b \in \operatorname{Ker} \tau$. Since E is exact, $b=\sigma(a)$ for some $a \in A$. Therefore, $\left(b, c^{\prime \prime}\right)=(\sigma(a), 0)=\sigma^{\prime \prime}(a) \in \operatorname{Im} \sigma^{\prime \prime}$. Hence $\operatorname{Ker} \tau^{\prime \prime} \subseteq \operatorname{Im} \sigma^{\prime \prime}$.

Therefore, $E^{\prime \prime}$ is exact.
Next, we show that the diagram (2) is commutative, i.e., $\beta \sigma^{\prime \prime}=\sigma 1_{A}$ and $\gamma \tau^{\prime \prime}=\tau \beta$.

- $\beta \sigma^{\prime \prime}=\sigma 1_{A}$, because $\beta \sigma^{\prime \prime}(a)=\beta(\sigma(a), 0)=\sigma(a)=\sigma 1_{A}(a)$ for all $a \in A$.
- Note that if $\left(b, c^{\prime \prime}\right) \in B^{\prime \prime}, \tau(b)=\gamma\left(c^{\prime \prime}\right)$. Thus $\gamma \tau^{\prime \prime}\left(b, c^{\prime \prime}\right)-\tau \beta\left(b, c^{\prime \prime}\right)=\gamma\left(c^{\prime \prime}\right)-\tau(b)=0$ for all $\left(b, c^{\prime \prime}\right) \in B^{\prime \prime}$, and so $\gamma \tau^{\prime \prime}=\tau \beta$.

Hence the diagram (2) is commutative, i.e., $\theta\left(1_{A}, \beta, \gamma\right): E^{\prime \prime} \rightarrow E$ is a morphism in the category \mathcal{E}.

Finally, we show the uniqueness of the pair $\left(\theta, E^{\prime \prime}\right)$. Suppose $E_{1}^{\prime \prime}: 0 \rightarrow A \xrightarrow{\sigma_{1}^{\prime \prime}} B_{1}^{\prime \prime} \xrightarrow{\tau_{1}^{\prime \prime}}$ $C^{\prime \prime} \rightarrow 0$ is a short exact sequence and $\beta_{1}: B^{\prime \prime} \rightarrow B$ is an R-module homomorphism such that $\theta_{1}\left(1_{A}, \beta_{1}, \gamma\right): E_{1}{ }^{\prime \prime} \rightarrow E$ is a morphism in \mathcal{E}, i.e., the diagram

is commutative. Since $\tau\left(\beta_{1}\left(b_{1}^{\prime \prime}\right)\right)=\gamma\left(\tau_{1}^{\prime \prime}\left(b_{1}^{\prime \prime}\right)\right)$ for all $b_{1}^{\prime \prime} \in B_{1}^{\prime \prime}$, the map $\delta: B_{1}^{\prime \prime} \rightarrow B^{\prime \prime}$ defined by $\delta\left(b_{1}^{\prime \prime}\right)=\left(\beta_{1}\left(b_{1}^{\prime \prime}\right), \tau_{1}^{\prime \prime}\left(b_{1}^{\prime \prime}\right)\right)$ for all $b_{1}^{\prime \prime} \in B_{1}^{\prime \prime}$ is well-defined. We claim that $\left(1_{A}, \delta, 1_{C^{\prime \prime}}\right)$: $E_{1}^{\prime \prime} \rightarrow E^{\prime \prime}$ is a morphism in \mathcal{E}, i.e., the diagram

is commutative. We only need to show $\delta \sigma_{1}^{\prime \prime}=\sigma^{\prime \prime}$ and $\tau_{1}^{\prime \prime}=\tau^{\prime \prime} \delta$.

- For all $a \in A$, we have

$$
\begin{aligned}
\delta \sigma_{1}^{\prime \prime}(a) & =\delta\left(\sigma_{1}^{\prime \prime}(a)\right) \\
& =\left(\beta_{1}\left(\sigma_{1}^{\prime \prime}(a)\right), \tau_{1}^{\prime \prime}\left(\sigma_{1}^{\prime \prime}(a)\right)\right) \\
& =\left(\beta_{1} \sigma_{1}^{\prime \prime}(a), 0\right) \quad\left(\text { since } E_{1}^{\prime \prime} \text { is exact }\right) \\
& =(\sigma(a), 0) \quad\left(\text { since } \theta_{1}\left(1_{A}, \beta_{1}, \gamma\right): E_{1}^{\prime \prime} \rightarrow E \text { is a morphism in } \mathcal{E}\right) \\
& =\sigma^{\prime \prime}(a) .
\end{aligned}
$$

Thus $\delta \sigma_{1}^{\prime \prime}=\sigma^{\prime \prime}$.

- $\tau^{\prime \prime} \delta\left(b_{1}^{\prime \prime}\right)=\tau^{\prime \prime}\left(\beta_{1}\left(b_{1}^{\prime \prime}\right), \tau_{1}^{\prime \prime}\left(b_{1}^{\prime \prime}\right)\right)=\tau_{1}^{\prime \prime}\left(b_{1}^{\prime \prime}\right)$ for all $b_{1}^{\prime \prime} \in B_{1}^{\prime \prime}$, so $\tau^{\prime \prime} \delta=\tau_{1}^{\prime \prime}$.

Hence $E_{1}{ }^{\prime \prime}$ is congruent to $E^{\prime \prime}$ and the proof is complete.

From Lemma 2.1.3 and Lemma 2.1.4, we know that $\left(\lambda, E^{\prime}\right)$ and $\left(\theta, E^{\prime \prime}\right)$ are uniquely determined by α and γ, respectively. We denote E^{\prime} by αE and $E^{\prime \prime}$ by $E \gamma$.

2.2 Connected pairs

Definition 2.2.1. A connected pair $\left(S, E_{*}, T\right)$ is a pair of additive functors S, T together with a function which assigns each short exact sequence $E: 0 \rightarrow A \rightarrow B \rightarrow$ $C \rightarrow 0$ an R-module homomorphism $E_{*}: S(C) \rightarrow T(A)$ such that for each morphism $(\alpha, \beta, \gamma): E \rightarrow E^{\prime}$ in the category \mathcal{E}, where $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $E^{\prime}: 0 \rightarrow$ $A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime} \rightarrow 0$ are short exact sequences of R-modules, the diagram

is commutative.

Proposition 2.2.2. Let $\left(S, E_{*}, T\right)$ be a connected pair and let $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $E^{\prime}: 0 \rightarrow A \rightarrow B^{\prime} \rightarrow C \rightarrow 0$ be two short exact sequences.
(1) Suppose E is congruent to E^{\prime}. Then $E_{*}=\left(E^{\prime}\right)_{*}$.
(2) Suppose $\alpha: A \rightarrow A^{\prime}$ is an R-module homomorphism. Then $(\alpha E)_{*}=T(\alpha) E_{*}$.
(3) Suppose $\gamma: C^{\prime} \rightarrow C$ is an R-module homomorphism. Then $(E \gamma)_{*}=E_{*} S(\gamma)$.

Proof. For (1), because E is congruent to E^{\prime}, there exists an R-module homomorphism $\delta: B \rightarrow B^{\prime}$ such that $\left(1_{A}, \delta, 1_{C}\right): E \rightarrow E^{\prime}$ is a morphism in \mathcal{E}, i.e., the diagram

is commutative. Therefore the diagram

is commutative, since $\left(S, E_{*}, T\right)$ is a connected pair. Hence we have $E_{*}=1_{T(A)} E_{*}=$ $\left(E^{\prime}\right)_{*} 1_{S(C)}=\left(E^{\prime}\right)_{*}$.

For (2), by Lemma 2.1.3, there is a morphism $\left(\alpha, \beta, 1_{C}\right): E \rightarrow \alpha E$ in the category \mathcal{E}. Therefore $(\alpha E)_{*}=(\alpha E)_{*} S\left(1_{C}\right)=T(\alpha) E_{*}$, since $\left(S, E_{*}, T\right)$ is a connected pair.

Similarly for (3), by Lemma 2.1.4, there is a morphism $\left(1_{A}, \beta^{\prime}, \gamma\right): E \gamma \rightarrow E$ in the category \mathcal{E}, so $(E \gamma)_{*}=T\left(1_{A}\right)(E \gamma)_{*}=E_{*} S(\gamma)$.

Corollary 2.2.3.

(1) Let $E: 0 \rightarrow A \xrightarrow{\sigma} B \xrightarrow{\tau} C \rightarrow 0$ be a short exact sequence. Then σE and $E \tau$ are split.
(2) Let $E_{1}: 0 \rightarrow A_{1} \xrightarrow{\sigma_{1}} B_{1} \xrightarrow{\tau_{1}} C_{1} \rightarrow 0$ be a split short exact sequence. Suppose $\left(S, E_{*}, T\right)$ is a connected pair. Then $\left(E_{1}\right)_{*}=0$.

Proof. For (1), we consider the split short exact sequence $E^{\prime}: 0 \rightarrow B \xrightarrow{i} B \oplus C \xrightarrow{\pi} C \rightarrow 0$ and define $\beta: B \rightarrow B \oplus C$ by $\beta(b)=(b, \tau(b))$ for all $b \in B$. Using the fact that E is exact, it is not difficult to check that the diagram

is commutative, i.e., $\left(\sigma, \beta, 1_{C}\right): E \rightarrow E^{\prime}$ is a morphism in \mathcal{E}. By Lemma 2.1.3, E^{\prime} is congruent to σE. Hence σE is split by Remark 2.1.2. Similarly for $E \tau$, we consider the split short exact sequence $E^{\prime \prime}: 0 \rightarrow A \xrightarrow{i} A \oplus B \xrightarrow{\pi} B \rightarrow 0$ and define $\delta: A \oplus B \rightarrow B$ by $\delta(a, b)=\sigma(a)+b$ for all $(a, b) \in A \oplus B$. Because E is exact, it is also not difficult to
check that the diagram

is commutative. By Lemma 2.1.4, $E^{\prime \prime}$ is congruent to $E \tau$. Hence $E \tau$ is split by Remark 2.1.2.

Next, we show (2). Since E_{1} is split, there is an R-module homomorphism $\delta_{1}: B_{1} \rightarrow$ A_{1} such that $\delta_{1} \sigma_{1}=1_{A_{1}}$. Consider the short exact sequence $E_{2}: 0 \rightarrow A_{1} \xrightarrow{1_{A_{1}}} A_{1} \rightarrow 0 \rightarrow 0$. Then the diagram

is commutative, i.e., $\left(1_{A_{1}}, \delta_{1}, 0\right): E_{1} \rightarrow E_{2}$ is a morphism in the category \mathcal{E}. Because $\left(S, E_{*}, T\right)$ is a connected pair, the diagram

$$
\begin{aligned}
& S\left(C_{1}\right) \xrightarrow{\left(E_{1}\right)_{*}} T\left(A_{1}\right) \\
& 0=S(0) \mid \\
& \quad \mid(0) \xrightarrow{\left(E_{2}\right)_{*}} T\left(A_{1}\right)
\end{aligned}
$$

is commutative. Hence $\left(E_{1}\right)_{*}=0$.

Remark 2.2.4. By Proposition 2.2.2 and Corollary 2.2.3, for every short exact sequence $0 \rightarrow A \xrightarrow{\sigma} B \xrightarrow{\tau} C \rightarrow 0$ and for every connected pair $\left(S, E_{*}, T\right)$, we have a complex

$$
S(A) \xrightarrow{S(\sigma)} S(B) \xrightarrow{S(\tau)} S(C) \xrightarrow{E_{*}} T(A) \xrightarrow{T(\sigma)} T(B) \xrightarrow{T(\tau)} T(C) .
$$

More precisely, $T(\sigma) E_{*}=(\sigma E)_{*}=0$, since σE is split; $E_{*} S(\tau)=(E \tau)_{*}=0$, since $E \tau$ is split.

Definition 2.2.5.

(1) Let S and S^{\prime} be two additive functors. A natural transformation $f: S \rightarrow S^{\prime}$ is a function that assigns every R-module C an R-module homomorphism $f(C)$:
$S(C) \rightarrow S^{\prime}(C)$ such that if $\gamma: C \rightarrow C_{1}$ is an R-module homomorphism, then the diagram

is commutative.
(2) Let $\left(S, E_{*}, T\right)$ and $\left(S^{\prime}, E_{*}^{\prime}, T^{\prime}\right)$ be two connected pairs, and let $E: 0 \rightarrow A \rightarrow B \rightarrow$ $C \rightarrow 0$ be a short exact sequence of R-modules. A morphism $(f, g):\left(S, E_{*}, T\right) \rightarrow$ $\left(S^{\prime}, E_{*}^{\prime}, T^{\prime}\right)$ of connected pairs is a pair of natural transformations $f: S \rightarrow S^{\prime}$ and $g: T \rightarrow T^{\prime}$ such that the diagram

is commutative.
(3) A connected pair $\left(S, E_{*}, T\right)$ is said to be right universal if for every connected pair $\left(S^{\prime}, E_{*}^{\prime}, T^{\prime}\right)$ and for every natural transformation $f: S \rightarrow S^{\prime}$, there is a unique natural transformation $g: T \rightarrow T^{\prime}$ such that $(f, g):\left(S, E_{*}, T\right) \rightarrow\left(S^{\prime}, E_{*}^{\prime}, T^{\prime}\right)$ is a morphism of connected pairs.

In this thesis, we only use the definition of being right universal for connected pairs, so we skip the definition of being left universal for connected pairs.

Theorem 2.2.6. Let $\left(S, E_{*}, T\right)$ be a connected pair. Suppose that for every short exact sequence $0 \rightarrow A \rightarrow I \rightarrow M \rightarrow 0$ with I an injective R-module, the sequence $S(I) \rightarrow$ $S(M) \rightarrow T(A) \rightarrow 0$ is exact. Then $\left(S, E_{*}, T\right)$ is right universal.

Proof. Let $\left(S^{\prime}, E_{*}{ }^{\prime}, T^{\prime}\right)$ be a connected pair and let $f: S \rightarrow S^{\prime}$ be a natural transformation. We want to show that there exists a unique natural transformation $g: T \rightarrow T^{\prime}$ such that $(f, g):\left(S, E_{*}, T\right) \rightarrow\left(S^{\prime}, E_{*}^{\prime}, T^{\prime}\right)$ is a morphism of connected pairs. We first show the existence of g. Let A be an R-module. Then A can be embedded into an
injective R-module I, so we have a short exact sequence $E_{A}: 0 \rightarrow A \xrightarrow{i} I \xrightarrow{\pi} M \rightarrow 0$, where $M=I / i(A)$. By the assumption, $S(I) \xrightarrow{S(\pi)} S(M) \xrightarrow{\left(E_{A}\right)_{*}} T(A) \longrightarrow 0$ is exact. By Remark 2.2.4, $S^{\prime}(I) \xrightarrow{S^{\prime}(\pi)} S^{\prime}(M) \xrightarrow{\left(E_{A}\right)_{*}^{\prime}} T^{\prime}(A) \xrightarrow{T^{\prime}(i)} T^{\prime}(I)$ is a complex. And because $f: S \rightarrow S^{\prime}$ is a natural transformation, the diagram

is commutative. Therefore we have a commutative diagram

where the upper row is exact and the lower row is a complex. By the above commutative diagram, we have $\left(E_{A}\right)_{*}{ }^{\prime} f(M) S(\pi)=\left(E_{A}\right)_{*}{ }^{\prime} S^{\prime}(\pi) f(I)=0$, and so $\left(E_{A}\right)_{*}{ }^{\prime} f(M)\left[\operatorname{Ker}\left(E_{A}\right)_{*}\right]$ $=\left(E_{A}\right)_{*}{ }^{\prime} f(M)[\operatorname{Im} S(\pi)]=0$. Thus $\operatorname{Ker}\left(E_{A}\right)_{*} \subseteq \operatorname{Ker}\left[\left(E_{A}\right)_{*}{ }^{\prime} f(M)\right]$. Moreover, because $T(A) \cong S(M) / \operatorname{Ker}\left(E_{A}\right)_{*}$, there exists an R-module homomorphism $g(A): T(A) \rightarrow T^{\prime}(A)$ such that

$$
\begin{equation*}
g(A)\left(E_{A}\right)_{*}=\left(E_{A}\right)_{*}^{\prime} f(M) \tag{1}
\end{equation*}
$$

Hence, for every R-module A, we assign A an R-module homomorphism $g(A): T(A) \rightarrow$ $T^{\prime}(A)$ such that $g(A)\left(E_{A}\right)_{*}=\left(E_{A}\right)_{*}^{\prime} f(M)$.

Next, we show that $g: T \rightarrow T^{\prime}$ is a natural transformation. Let $\alpha: A \rightarrow A_{1}$ be an R-module homomorphism. We want to show that the diagram

is commutative, i.e., $g\left(A_{1}\right) T(\alpha)=T^{\prime}(\alpha) g(A)$. Similarly as above, we have a short exact sequence $E_{A_{1}}: 0 \rightarrow A_{1} \xrightarrow{i_{1}} I_{1} \xrightarrow{\pi_{1}} M_{1} \rightarrow 0$, where I_{1} is injective, and a commutative
diagram
where the upper row is exact and the lower row is a complex. In particular, we have

$$
\begin{equation*}
\left(E_{A_{1}}\right)_{*}^{\prime} f\left(M_{1}\right)=g\left(A_{1}\right)\left(E_{A_{1}}\right)_{*} . \tag{2}
\end{equation*}
$$

We consider the diagram

Note that because I_{1} is injective, there exists an R-module homomorphism $\beta: I \rightarrow I_{1}$ such that the diagram

is commutative, i.e., $\beta i=i_{1} \alpha$. Also, since $\pi_{1} \beta i=\pi_{1} i_{1} \alpha=0, \operatorname{Im} i \subseteq \operatorname{Ker} \pi_{1} \beta$. Thus there exists an R-module homomorphism $\gamma: M \rightarrow M_{1}$ such that $\gamma \pi=\pi_{1} \beta$. Therefore, we have a commutative diagram

i.e., $(\alpha, \beta, \gamma): E_{A} \rightarrow E_{A_{1}}$ is a morphism in the category \mathcal{E}. Since $\left(S, E_{*}, T\right)$ and $\left(S^{\prime}, E_{*}{ }^{\prime}, T^{\prime}\right)$ are connected pairs,

$$
\begin{equation*}
T(\alpha)\left(E_{A}\right)_{*}=\left(E_{A_{1}}\right)_{*} S(\gamma) \quad \text { and } \quad T^{\prime}(\alpha)\left(E_{A}\right)_{*}^{\prime}=\left(E_{A_{1}}\right)_{*}^{\prime} S^{\prime}(\gamma) \tag{3}
\end{equation*}
$$

Moreover, because $f: S \rightarrow S^{\prime}$ is a natural transformation,

$$
\begin{equation*}
S^{\prime}(\gamma) f(M)=f\left(M_{1}\right) S(\gamma) \tag{4}
\end{equation*}
$$

Thus we have

$$
\begin{array}{rlrl}
T^{\prime}(\alpha) g(A)\left(E_{A}\right)_{*} & =T^{\prime}(\alpha)\left(E_{A}\right)_{*}{ }^{\prime} f(M) & (\operatorname{by}(1)) \\
& =\left(E_{A_{1}}\right)_{*}^{\prime} S^{\prime}(\gamma) f(M) & & (\operatorname{by}(3)) \\
& =\left(E_{A_{1}}\right)_{*}{ }^{\prime} f\left(M_{1}\right) S(\gamma) & & (\operatorname{by}(4)) \\
& =g\left(A_{1}\right)\left(E_{A_{1}}\right)_{*} S(\gamma) & & (\operatorname{by}(2)) \\
& =g\left(A_{1}\right) T(\alpha)\left(E_{A}\right)_{*} & & (b y(3)) .
\end{array}
$$

Hence $T^{\prime}(\alpha) g(A)=g\left(A_{1}\right) T(\alpha)$, since $\left(E_{A}\right)_{*}$ is onto.
Next we show that $(f, g):\left(S, E_{*}, T\right) \rightarrow\left(S^{\prime}, E_{*}^{\prime}, T^{\prime}\right)$ is a morphism of connected pairs, i.e., if $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence, then the diagram

is commutative. So far we already show that for each R-module A with the special short exact sequence $E_{A}: 0 \rightarrow A \rightarrow I \rightarrow M \rightarrow 0$, the diagram

is commutative. Let $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence. We consider the diagram

Because I is injective and because the map $B \rightarrow C$ is onto, similar as above, there exist R-module homomorphisms $\mu: B \rightarrow I$ and $\nu: C \rightarrow M$ such that $\left(1_{A}, \mu, \nu\right): E \rightarrow E_{A}$ is a morphism in the category \mathcal{E}, i.e, the diagram

is commutative. By the fact that $\left(S, E_{*}, T\right)$ and $\left(S^{\prime}, E_{*}{ }^{\prime}, T^{\prime}\right)$ are connected pairs, we have $E_{*}=\left(E_{A}\right)_{*} S(\nu)$ and $E_{*}^{\prime}=\left(E_{A}\right)_{*}^{\prime} S^{\prime}(\nu)$. Moreover, $f(M) S(\nu)=S^{\prime}(\nu) f(C)$, since f is a natural transformation. Therefore,

$$
g(A) E_{*}=g(A)\left(E_{A}\right)_{*} S(\nu)=\left(E_{A}\right)_{*}^{\prime} f(M) S(\nu)=\left(E_{A}\right)_{*}^{\prime} S^{\prime}(\nu) f(C)=E_{*}^{\prime} f(C) .
$$

Hence (f, g) is a morphism of connected pairs.
Finally, we show that g is unique. Suppose that $g_{1}: T \rightarrow T^{\prime}$ is a natural transformation such that $\left(f, g_{1}\right):\left(S, E_{*}, T\right) \rightarrow\left(S^{\prime}, E_{*}^{\prime}, T^{\prime}\right)$ is a morphism of connected pairs, i.e., $g_{1}(A) E_{*}=E_{*}^{\prime} f(C)$. Then $g_{1}(A) E_{*}=E_{*}^{\prime} f(C)=g(A) E_{*}$. Thus $g_{1}(A)=g(A)$ for every R-module A, since E_{*} is onto. Hence $g_{1}=g$ and this proof is complete.

2.3 Connected sequences and universal connected sequences

Definition 2.3.1.

(1) Let $\left\{T^{n}\right\}_{n \geq 0}$ be a family of additive functors and let $\left\{E^{n}\right\}_{n \geq 0}$ be a family of functions. A connected sequence $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ is a sequence $\left\{\cdots, T^{n}, E^{n}, T^{n+1}, \cdots\right\}$ such that each pair $\left(T^{n}, E^{n}, T^{n+1}\right)$ is a connected pair for all $n \geq 0$.
(2) A connected sequence $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ is said to be universal if for every connected sequence $\left\{T^{\prime n}, E^{\prime n}\right\}_{n \geq 0}$ and for every natural transformation $f^{0}: T^{0} \rightarrow T^{\prime 0}$, there is a unique family of natural transformations $\left\{f^{n}\right\}_{n \geq 1}$ such that $f^{n+1} E^{n}=E^{\prime n} f^{n}$ for all $n \geq 0$, i.e., for each short exact sequence of R-modules $E: 0 \rightarrow A \rightarrow B \rightarrow$ $C \rightarrow 0$, the diagram

is commutative.

Remark 2.3.2. A connected sequence $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ assigns every short exact sequence $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ a complex

$$
\cdots \rightarrow T^{n}(A) \rightarrow T^{n}(B) \rightarrow T^{n}(C) \xrightarrow{E^{n}} T^{n+1}(A) \rightarrow \cdots
$$

Theorem 2.3.3. Let $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ be a connected sequence. Suppose that for every short exact sequence $0 \rightarrow A \rightarrow I \rightarrow M \rightarrow 0$ with I an injective R-module, the sequence $T^{n}(I) \rightarrow T^{n}(M) \rightarrow T^{n+1}(A) \rightarrow 0$ is exact for all $n \geq 0$. Then $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ is universal.

Proof. Let $\left\{T^{\prime n}, E^{\prime n}\right\}_{n \geq 0}$ be a connected sequence and let $f^{0}: T^{0} \rightarrow T^{0}$ be a natural transformation. We want to show that there exists a unique family of natural transformations $\left\{f^{n}\right\}_{n \geq 1}$ such that $f^{n+1} E^{n}=E^{\prime n} f^{n}$ for all $n \geq 0$. First note that for every $n \geq 0$, $\left(T^{n}, E^{n}, T^{n+1}\right)$ is a connected pair. Since for every short exact sequence $0 \rightarrow A \rightarrow I \rightarrow$ $M \rightarrow 0$ with I an injective R-module, the sequence $T^{n}(I) \rightarrow T^{n}(M) \rightarrow T^{n+1}(A) \rightarrow 0$ is exact for all $n \geq 0$, by Theorem 2.2.6, $\left(T^{n}, E^{n}, T^{n+1}\right)$ is right universal for all $n \geq 0$.

Now, we show the existence of $\left\{f^{n}\right\}_{n \geq 1}$ by induction on n. For $n=1$, because we have a right universal connected pair $\left(T^{0}, E^{0}, T^{1}\right)$ and a natural transformation $f^{0}: T^{0} \rightarrow T^{\prime 0}$, by Definition 2.2.5, there is a unique natural transformation $f^{1}: T^{1} \rightarrow T^{\prime 1}$ such that $\left(f^{0}, f^{1}\right):\left(T^{0}, E^{0}, T^{1}\right) \rightarrow\left(T^{\prime 0}, E^{\prime 0}, T^{1}\right)$ is a morphism of connected pairs, i.e., for every short exact sequence of R-modules $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, the diagram

is commutative, i.e., $f^{1} E^{0}=E^{0} f^{0}$.
Next, suppose $n \geq 2$ and suppose for $k=1,2, \cdots, n-1$, there exist natural transformations $f^{k}: T^{k} \rightarrow T^{k}$ such that $f^{k} E^{k-1}=E^{k-1} f^{k-1}$. Because the connected pair $\left(T^{n-1}, E^{n-1}, T^{n}\right)$ is right universal and $f^{n-1}: T^{n-1} \rightarrow T^{\prime n-1}$ is a natural transformation, again by Definition 2.2.5, there is a unique natural transformation $f^{n}: T^{n} \rightarrow T^{n}$ such that $\left(f^{n-1}, f^{n}\right):\left(T^{n-1}, E^{n-1}, T^{n}\right) \rightarrow\left(T^{\prime n-1}, E^{\prime n-1}, T^{\prime n}\right)$ is a morphism of connected pairs, i.e., $f^{n} E^{n-1}=E^{n-1} f^{n-1}$. Hence $\left\{f^{n}\right\}_{n \geq 1}$ is a family of natural transformations such that $f^{n+1} E^{n}=E^{\prime n} f^{n}$ for all $n \geq 0$.

Finally, we show the uniqueness of $\left\{f^{n}\right\}_{n \geq 1}$. In the above proof, we know that f^{n+1} is uniquely determined by f^{n} for all $n \geq 0$. Since f^{0} is given, the proof is complete.

In the next corollary, we use Theorem 2.3.3 to give some other conditions that guarantees a connected sequence $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ to be universal. Later in this thesis, we will use the following corollary to prove that certain connected sequences are universal.

Corollary 2.3.4. Let $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ be a connected sequence and suppose that

- $T^{n}(I)=0$ for all injective R-modules I and $n>0$, and that
- for every short exact sequence $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, the assigned complex

$$
\cdots \rightarrow T^{n}(A) \rightarrow T^{n}(B) \rightarrow T^{n}(C) \xrightarrow{E^{n}} T^{n+1}(A) \rightarrow \cdots
$$

is exact.

Then $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ is universal.
Proof. Let $E: 0 \rightarrow A \rightarrow I \rightarrow M \rightarrow 0$ be a short exact sequence with I an injective R-module. By assumption, we have an exact sequence

$$
\cdots \rightarrow T^{n}(A) \rightarrow T^{n}(I) \rightarrow T^{n}(M) \xrightarrow{E^{n}} T^{n+1}(A) \rightarrow \cdots
$$

Since $T^{n}(I)=0$ for all $n>0$, we see that $T^{n}(I) \rightarrow T^{n}(M) \rightarrow T^{n+1}(A) \rightarrow 0$ is exact for all $n \geq 0$. By Theorem 2.3.3, $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ is universal.

Lemma 2.3.5. Let $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ and $\left\{T^{\prime n}, E^{\prime n}\right\}_{n \geq 0}$ be two connected sequences. Suppose $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ and $\left\{T^{\prime n}, E^{\prime n}\right\}_{n \geq 0}$ are universal with $T^{0}=T^{\prime 0}$. Then $T^{n}(A) \cong T^{\prime n}(A)$ for all R-module A and $n \geq 0$.

Proof. Because the connected sequence $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ is universal and $f^{0}=1: T^{0} \rightarrow$ $T^{\prime 0}$ is a natural transformation, by Definition 2.3.1, there exists a family of natural transformations $\left\{f^{n}\right\}_{n \geq 1}$ such that $f^{n+1} E^{n}=E^{\prime n} f^{n}$ for all $n \geq 0$, i.e., for each short exact sequence of R-modules $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, the diagram

is commutative for all $n \geq 0$. Similarly, since the connected sequence $\left\{T^{\prime n}, E^{\prime n}\right\}_{n \geq 0}$ is universal and $f^{\prime 0}=1: T^{0} \rightarrow T^{0}$ is a natural transformation, there exists a family of natural transformations $\left\{f^{\prime n}\right\}_{n \geq 1}$ such that $f^{\prime n+1} E_{A}{ }^{\prime n}=E_{A}{ }^{n} f^{\prime n}$ for all $n \geq 0$, i.e., for each short exact sequence of R-modules $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, the diagram

is commutative for all $n \geq 0$. Therefore, the diagram

is commutative for all $n \geq 0$, i.e., $f^{\prime n+1} f^{n+1} E^{n}=E^{n} f^{\prime n} f^{n}$ for all $n \geq 0$. Hence for the connected sequence $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ and the natural transformation $1_{T^{0}}=f^{\prime 0} f^{0}: T^{0} \rightarrow T^{0}$, $\left\{f^{\prime n} f^{n}\right\}_{n \geq 1}$ is a family of natural transformations such that $\left(f^{\prime n+1} f^{n+1}\right) E^{n}=E^{n}\left(f^{\prime n} f^{n}\right)$ for all $n \geq 0$. On the other hand, it is clear that $\left\{1_{T^{n}}\right\}_{n \geq 1}$ is also a family of natural transformations such that $1_{T^{n+1}} E^{n}=E^{n} 1_{T^{n}}$ for all $n \geq 0$. Since the connected sequence $\left\{T^{n}, E^{n}\right\}_{n \geq 0}$ is universal, $\left\{f^{\prime n} f^{n}\right\}_{n \geq 1}=\left\{1_{T^{n}}\right\}_{n \geq 1}$, i.e.,

$$
f^{\prime n} f^{n}=1_{T^{n}} \text { for all } n \geq 1
$$

Similarly, because for each short exact sequence of R-modules $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, the diagram

is commutative for all $n \geq 0$, i.e., $f^{n+1} f^{\prime n+1} E^{\prime n}=E^{\prime n} f^{n} f^{\prime n}$ for all $n \geq 0$. Thus for the connected sequence $\left\{T^{\prime n}, E^{\prime n}\right\}_{n \geq 0}$ and the natural transformation $1_{T^{\prime 0}}=f^{0} f^{\prime 0}$:
$T^{\prime 0} \rightarrow T^{\prime 0},\left\{f^{n} f^{\prime n}\right\}_{n \geq 1}$ is a family of natural transformations such that $\left(f^{n+1} f^{\prime n+1}\right) E^{\prime n}=$ $E^{\prime n}\left(f^{n} f^{\prime n}\right)$ for all $n \geq 0$. Again, it is clear that $\left\{1_{T^{\prime n}}\right\}_{n \geq 1}$ is a family of natural transformations such that $1_{T^{\prime n+1}} E^{\prime n}=E^{\prime n} 1_{T^{\prime n}}$ for all $n \geq 0$. Since the connected sequence $\left\{T^{\prime n}, E^{\prime n}\right\}_{n \geq 0}$ is universal, $\left\{f^{n} f^{\prime n}\right\}_{n \geq 1}=\left\{1_{T^{\prime n}}\right\}_{n \geq 1}$, i.e.,

$$
f^{n} f^{\prime n}=1_{T^{\prime n}} \text { for all } n \geq 1
$$

Therefore, $f^{n}(A): T^{n}(A) \rightarrow T^{\prime n}(A)$ is an isomorphism for all R-module A and $n \geq 0$. Hence $T^{n}(A) \cong T^{\prime n}(A)$ for all $n \geq 0$.

3 Local Cohomology and Čech Complexes

3.1 Local cohomology vs universal connected sequences

In this section, we will show that $\left\{H_{\mathbf{m}}^{n}(-), E^{n}\right\}_{n \geq 0}$ is a universal connected sequence. In order to do so, we need some properties of the right derived functors and cohomology.

Definition 3.1.1. ([3], 10.1) Let \mathcal{X} and \mathcal{Y} be cochain complexes.
(1) A cochain map $f: \mathcal{X} \rightarrow \mathcal{Y}$ is said to be null-homotopic if for all n, there exist maps $s_{n}: X_{n} \rightarrow Y_{n-1}$ such that $\delta_{n} s_{n}+s_{n+1} \lambda_{n+1}=f_{n}$, where λ_{n} and δ_{n} are the boundary maps in \mathcal{X} and \mathcal{Y}, respectively.
(2) Cochain maps $f, g: \mathcal{X} \rightarrow \mathcal{Y}$ are said to be cochain homotopic, and denoted by $f \sim g$, if $f-g$ is null homotopic.
(3) A cochain map $f: \mathcal{X} \rightarrow \mathcal{Y}$ is called a homotopy equivalence if there exists a cochain map $g: \mathcal{Y} \rightarrow \mathcal{X}$ such that $g f \sim 1_{\mathcal{X}}$ and $f g \sim 1_{\mathcal{Y}}$. In this case we say that \mathcal{X} and \mathcal{Y} are homotopy equivalent.

Remark 3.1.2. ([3], 10.1) It is well-known that if a cochain map $f: \mathcal{X} \rightarrow \mathcal{Y}$ is nullhomotopic, then the induced map f^{*} on cohomology is the zero map.

Let A be an R-module and let T be a left exact additive functor. The nth right derived functor $R^{n} T$ associate to T is defined as the following.

- For an R-module $A, R^{n} T(A)=H^{n}\left(T\left(\mathcal{I}_{A}\right)\right)$, where \mathcal{I}_{A} is a cochain complex obtained by deleting A from an injective resolution \mathcal{I} of A and $T\left(\mathcal{I}_{A}\right)$ is the cochain complex obtained by applying T to every term in \mathcal{I}_{A}.
- For an R-module homomorphism $f: A \rightarrow B$,

$$
R^{n} T(f)=(T \hat{f})^{*}: H^{n}\left(T\left(\mathcal{I}_{A}\right)\right) \rightarrow H^{n}\left(T\left(\mathcal{I}_{B}\right)\right)
$$

is the map on cohomology induced by the cochain map $T \hat{f}: T\left(\mathcal{I}_{A}\right) \rightarrow T\left(\mathcal{I}_{B}\right)$, where $\hat{f}: \mathcal{I}_{A} \rightarrow \mathcal{I}_{B}$ is a cochain map lifting f via the Comparison Theorem.

Proposition 3.1.3. ([3], 10.5)(Comparison Theorem) Let A and B be R-modules. Let $h: A \rightarrow B$ be an R-module homomorphism. Suppose that

is a diagram of complexes with Q_{n} injective for each $n \geq 0$ and \mathcal{N} exact. Then there exist maps $h_{n}: N_{n} \rightarrow Q_{n}$ making the diagram commute. In other words, there exists a cochain map $\hat{h}: \mathcal{N} \rightarrow \mathcal{Q}$ lifting h.

Note that if \mathcal{I} and \mathcal{I}^{\prime} are two cochain complexes obtained by deleting A from injective resolutions of A, then \mathcal{I} and \mathcal{I}^{\prime} are homotopy equivalent. Moreover, T carries homotopy equivalent cochain complexes to homotopy equivalent cochain complexes and carries chain homotopic cochain maps to chain homotopic cochain maps. Hence $R^{n} T$ does not depend on the choice of injective resolutions.

Lemma 3.1.4. ([3], 11.9) Let T be a left exact additive functor.
(1) $R^{n} T$ is an additive functor for all $n \geq 0$.
(2) $R^{0} T(A)=T(A)$ and $R^{0} T(f)=T(f)$, for all R-modules A and R-module homomorphisms f.
(3) For each short exact sequence of R-modules $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, there is a long exact sequence of cohomology

$$
0 \rightarrow R^{0} T(A) \rightarrow R^{0} T(B) \rightarrow R^{0} T(C) \rightarrow R^{1} T(A) \rightarrow \cdots
$$

(4) Let $E: 0 \rightarrow A \xrightarrow{\sigma} B \xrightarrow{\tau} C \rightarrow 0$ be a split short exact sequence of R-modules. Then the sequence $T(E): 0 \rightarrow T(A) \xrightarrow{T(\sigma)} T(B) \xrightarrow{T(\tau)} T(C) \rightarrow 0$ is exact.

Now we know that $R^{n} T$ is an additive functor for all $n \geq 0$ with $R^{0} T=T$. We let E^{n} denote the connecting maps $R^{n} T(C) \rightarrow R^{n+1} T(A)$ for all $n \geq 0$.

Lemma 3.1.5. ([4], 2.4.1) Let $E: 0 \rightarrow \mathcal{K} \xrightarrow{\phi} \mathcal{L} \xrightarrow{\psi} \mathcal{M} \rightarrow 0$ be a short exact sequence of cochain complexes, where ϕ and ψ are cochain maps. Then there is a long exact sequence of cohomology

$$
\cdots \rightarrow H^{n}(\mathcal{K}) \xrightarrow{\left(\phi^{n}\right)^{*}} H^{n}(\mathcal{L}) \xrightarrow{\left(\psi^{n}\right)^{*}} H^{n}(\mathcal{M}) \longrightarrow H^{n+1}(\mathcal{K}) \rightarrow \cdots
$$

where $\left(\phi^{n}\right)^{*}$ and $\left(\psi^{n}\right)^{*}$ are the maps of cohomology induced by the R-module homomorphisms $\phi^{n}: \mathcal{K}^{n} \rightarrow \mathcal{L}^{n}$ and $\psi^{n}: \mathcal{L}^{n} \rightarrow \mathcal{M}^{n}$, respectively, for all n.

We also let E^{n} denote the connecting map $H^{n}(\mathcal{M}) \rightarrow H^{n+1}(\mathcal{K})$ for all n.

Lemma 3.1.6. ([4], 2.4.2) Let $E: 0 \rightarrow \mathcal{K} \rightarrow \mathcal{L} \rightarrow \mathcal{M} \rightarrow 0$ and $E^{\prime}: 0 \rightarrow \mathcal{K}^{\prime} \rightarrow \mathcal{L}^{\prime} \rightarrow$ $\mathcal{M}^{\prime} \rightarrow 0$ be two short exact sequences of cochain complexes. Suppose that there are three cochain maps $f: \mathcal{K} \rightarrow \mathcal{K}^{\prime}, g: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$, and $h: \mathcal{M} \rightarrow \mathcal{M}^{\prime}$ such that the diagram

is commutative. Then the diagram

$$
\begin{gathered}
H^{n}(\mathcal{M}) \xrightarrow{E^{n}} H^{n+1}(\mathcal{K}) \\
\left(h^{n}\right)^{*} \downarrow \\
H^{n}\left(\mathcal{M}^{\prime}\right) \xrightarrow{\left(E^{\prime}\right)^{n}}{ }^{\left(f^{n+1}\right)^{*}} H^{n+1}\left(\mathcal{K}^{\prime}\right)
\end{gathered}
$$

is commutative for all n.

Proposition 3.1.7. Let $0 \rightarrow A \xrightarrow{\sigma_{0}} B \xrightarrow{\tau_{0}} C \rightarrow 0$ be a short exact sequence of R modules. Then there is a short exact sequence of complexes $0 \rightarrow \mathcal{I}_{A} \rightarrow \mathcal{I}_{B} \rightarrow \mathcal{I}_{C} \rightarrow 0$, where $\mathcal{I}_{A}, \mathcal{I}_{B}, \mathcal{I}_{C}$ are injective resolutions of A, B, C, respectively.

Proof. First, we embed B and C into injective R-modules A_{0} and C_{0}, respectively, and let $\phi_{0}: B \rightarrow A_{0}$ and $h_{0}: C \rightarrow C_{0}$ be embedding maps. Then the composite $f_{0}=\phi_{0} \sigma_{0}: A \rightarrow A_{0}$ is an R-module monomorphism, since ϕ_{0} and σ_{0} are both R-module monomorphisms. Now we define $g_{0}: B \rightarrow A_{0} \oplus C_{0}$ by $g_{0}(b)=\left(\phi_{0}(b), h_{0} \tau_{0}(b)\right)$ for all
$b \in B$. Then it is not difficult to check that the diagram

is commutative. Moreover, because f_{0} and h_{0} are both one-to-one, g_{0} is one-to-one, by the Five Lemma. Also, $A_{0} \oplus C_{0}$ is injective since A_{0} and C_{0} are injective. Then the diagram

is commutative with exact rows and columns.
Secondly, by the Snake Lemma, we have the exact sequence

$$
0 \rightarrow \text { Ker } f_{0} \rightarrow \text { Ker } g_{0} \rightarrow \text { Ker } h_{0} \rightarrow \text { Coker } f_{0} \rightarrow \text { Coker } g_{0} \rightarrow \text { Coker } h_{0} \rightarrow 0
$$

Because h_{0} is one-to-one, $0 \rightarrow$ Coker $f_{0} \xrightarrow{\sigma_{1}}$ Coker $g_{0} \xrightarrow{\tau_{1}}$ Coker $h_{0} \rightarrow 0$ is exact, where σ_{1} and τ_{1} are the R-module homomorphisms induced by $i: A_{0} \rightarrow A_{0} \oplus C_{0}$ and $\pi: A_{0} \oplus C_{0} \rightarrow$ C_{0}, respectively. Similar as above, there are injective R-modules A_{1}, C_{1} and R-module homomorphisms $\overline{\phi_{1}}, \overline{f_{1}}, \overline{g_{1}}$, and $\overline{h_{1}}$ such that the diagram

is commutative with exact rows and columns. We take

$$
f_{1}=\overline{f_{1}} \pi_{A_{0}}, \quad g_{1}=\overline{g_{1}} \pi_{A_{0} \oplus C_{0}}, \quad \text { and } \quad h_{1}=\overline{h_{1}} \pi_{C_{0}}
$$

where $\pi_{A_{0}}: A_{0} \rightarrow$ Coker $f_{0}, \pi_{A_{0} \oplus C_{0}}: A_{0} \oplus C_{0} \rightarrow$ Coker g_{0}, and $\pi_{C_{0}}: C_{0} \rightarrow$ Coker h_{0} are the canonical epimorphisms. Since $\overline{f_{1}}$ is one-to-one and $\operatorname{Ker} \pi_{A_{0}}=\operatorname{Im} f_{0}, \operatorname{Ker} f_{1}=\operatorname{Im} f_{0}$.

Similarly, we have $\operatorname{Ker} g_{1}=\operatorname{Im} g_{0}$ and $\operatorname{Ker} h_{1}=\operatorname{Im} h_{0}$. Hence, from the commutative diagrams (1) and (2), we see that the diagram

is commutative with exact rows and columns.
Thirdly, applying the Snake lemma to the diagram (2), because $\overline{h_{1}}$ is one-to-one, we have the exact sequence $0 \rightarrow$ Coker $\overline{f_{1}} \xrightarrow{\sigma_{2}} \operatorname{Coker} \overline{g_{1}} \xrightarrow{\tau_{2}} \operatorname{Coker} \overline{h_{1}} \rightarrow 0$, where σ_{2} and τ_{2} are the R-module homomorphisms induced by $i: A_{1} \rightarrow A_{1} \oplus C_{1}$ and $\pi: A_{1} \oplus C_{1} \rightarrow C_{1}$, respectively. Then similar as above, there are injective R-modules A_{2}, C_{2} and R-module homomorphisms $\overline{\phi_{2}}, \overline{f_{2}}, \overline{g_{2}}$, and $\overline{h_{2}}$ such that the diagram

is commutative with exact rows and columns. On the other hand, since $\operatorname{Im} f_{1}=\operatorname{Im} \overline{f_{1}}$, Coker $f_{1}=\operatorname{Coker} \overline{f_{1}}$. Similarly, we have Coker $g_{1}=\operatorname{Coker} \overline{g_{1}}$, and Coker $h_{1}=\operatorname{Coker} \overline{h_{1}}$. We take

$$
f_{2}=\overline{f_{2}} \pi_{A_{1}}, \quad g_{2}=\overline{g_{2}} \pi_{A_{1} \oplus C_{1}}, \quad \text { and } \quad h_{2}=\overline{h_{2}} \pi_{C_{1}}
$$

where $\pi_{A_{1}}: A_{1} \rightarrow$ Coker $f_{1}=$ Coker $\overline{f_{1}}, \pi_{A_{1} \oplus C_{1}}: A_{1} \oplus C_{1} \rightarrow$ Coker $g_{1}=$ Coker $\overline{g_{1}}$, and $\pi_{C_{1}}: C_{1} \rightarrow$ Coker $h_{1}=$ Coker $\overline{h_{1}}$ are the canonical epimorphisms. Similar as above,
combining the commutative diagrams (3) and (4), we have the commutative diagram

in which all rows and columns are exact.
Finally, continue the same discussion, then we will get injective resolutions $\mathcal{I}_{A}: 0 \rightarrow$ $A \xrightarrow{f_{0}} A_{0} \xrightarrow{f_{1}} A_{1} \xrightarrow{f_{2}} \cdots$ of $A, \mathcal{I}_{B}: 0 \rightarrow B \xrightarrow{g_{0}} B_{0}=A_{0} \oplus C_{0} \xrightarrow{g_{1}} B_{1}=A_{1} \oplus C_{1} \xrightarrow{g_{2}} \cdots$ of B, and $\mathcal{I}_{C}: 0 \rightarrow C \xrightarrow{h_{0}} C_{0} \xrightarrow{h_{1}} C_{1} \xrightarrow{h_{2}} \cdots$ of C such that $0 \rightarrow \mathcal{I}_{A} \rightarrow \mathcal{I}_{B} \rightarrow \mathcal{I}_{C} \rightarrow 0$ is exact. The proof is complete.

Let $E: 0 \rightarrow A \xrightarrow{\sigma_{0}} B \xrightarrow{\tau_{0}} C \rightarrow 0$ and $E^{\prime}: 0 \rightarrow A^{\prime} \xrightarrow{\sigma_{0}{ }^{\prime}} B^{\prime} \xrightarrow{\tau_{0}{ }^{\prime}} C^{\prime} \rightarrow 0$ be two short exact sequences of R-modules. By Proposition 3.1.7, for the short exact sequence E, there exists a short exact sequence of complexes $0 \rightarrow \mathcal{I}_{A} \rightarrow \mathcal{I}_{B} \rightarrow \mathcal{I}_{C} \rightarrow 0$, where \mathcal{I}_{A}, $\mathcal{I}_{B}, \mathcal{I}_{C}$ are injective resolutions of A, B, C, respectively. In particular, we know that the nth level of the short exact sequence of complexes $0 \rightarrow \mathcal{I}_{A} \rightarrow \mathcal{I}_{B} \rightarrow \mathcal{I}_{C} \rightarrow 0$ is $0 \rightarrow A_{n} \xrightarrow{i}$ $A_{n} \oplus C_{n} \xrightarrow{\pi} C_{n} \rightarrow 0$ for all $n \geq 0$. Similarly, for the short exact sequence E^{\prime}, there exists a short exact sequence of complexes $0 \rightarrow \mathcal{I}_{A^{\prime}} \rightarrow \mathcal{I}_{B^{\prime}} \rightarrow \mathcal{I}_{C^{\prime}} \rightarrow 0$, where $\mathcal{I}_{A^{\prime}}, \mathcal{I}_{B^{\prime}}, \mathcal{I}_{C^{\prime}}$ are injective resolutions of $A^{\prime}, B^{\prime}, C^{\prime}$, respectively. And the nth level of the short exact sequence of complexes $0 \rightarrow \mathcal{I}_{A^{\prime}} \rightarrow \mathcal{I}_{B^{\prime}} \rightarrow \mathcal{I}_{C^{\prime}} \rightarrow 0$ is $0 \rightarrow A_{n}{ }^{\prime} \xrightarrow{i} A_{n}{ }^{\prime} \oplus C_{n}{ }^{\prime} \xrightarrow{\pi} C_{n}{ }^{\prime} \rightarrow 0$ for all $n \geq 0$. In the next proposition, we will show that if $(\alpha, \beta, \gamma): E \rightarrow E^{\prime}$ is a morphism in the category \mathcal{E}, then there exist three cochain maps $\hat{\alpha}, \hat{\beta}$, and $\hat{\gamma}$ such that the diagram

is commutative.
Proposition 3.1.8. Let $E: 0 \rightarrow A \xrightarrow{\sigma_{0}} B \xrightarrow{\tau_{0}} C \rightarrow 0$ and $E^{\prime}: 0 \rightarrow A^{\prime} \xrightarrow{\sigma_{0}{ }^{\prime}} B^{\prime} \xrightarrow{\tau_{0}{ }^{\prime}}$ $C^{\prime} \rightarrow 0$ be two short exact sequences of R-modules. Suppose that $(\alpha, \beta, \gamma): E \rightarrow E^{\prime}$ is a morphism in the category \mathcal{E}, i.e., the diagram

is commutative. Then there exist injective resolutions $\mathcal{I}_{A}, \mathcal{I}_{B}, \mathcal{I}_{C}, \mathcal{I}_{A^{\prime}}, \mathcal{I}_{B^{\prime}}, \mathcal{I}_{C^{\prime}}$ of A, B, $C, A^{\prime}, B^{\prime}, C^{\prime}$, respectively, and three cochain maps $\hat{\alpha}: \mathcal{I}_{A} \rightarrow \mathcal{I}_{A^{\prime}}, \hat{\beta}: \mathcal{I}_{B} \rightarrow \mathcal{I}_{B^{\prime}}$, and $\hat{\gamma}: \mathcal{I}_{C} \rightarrow \mathcal{I}_{C^{\prime}}$ such that the diagram

is commutative.

Proof. Recall that in the proof of Proposition 3.1.7, for the short exact sequence E, we construct injective resolutions

$$
\begin{aligned}
& \mathcal{I}_{A}: 0 \rightarrow A \xrightarrow{f_{0}} A_{0} \xrightarrow{f_{1}} A_{1} \xrightarrow{f_{2}} \cdots \\
& \mathcal{I}_{B}: 0 \rightarrow B \xrightarrow{g_{0}} B_{0}=A_{0} \oplus C_{0} \xrightarrow{g_{1}} B_{1}=A_{1} \oplus C_{1} \xrightarrow{g_{2}} \cdots \\
& \mathcal{I}_{C}: 0 \rightarrow C \xrightarrow{h_{0}} C_{0} \xrightarrow{h_{1}} C_{1} \xrightarrow{h_{2}} \cdots
\end{aligned}
$$

such that $0 \rightarrow \mathcal{I}_{A} \rightarrow \mathcal{I}_{B} \rightarrow \mathcal{I}_{C} \rightarrow 0$ is exact. In particular, we use two embedding maps $\phi_{0}: B \rightarrow A_{0}$ and $h_{0}: C \rightarrow C_{0}$ to obtain the maps f_{0} and g_{0}; more precisely, $f_{0}=\phi_{0} \sigma_{0}$ and $g_{0}: B \rightarrow A_{0} \oplus C_{0}$ is defined by $g_{0}(b)=\left(\phi_{0}(b), h_{0} \tau_{0}(b)\right)$ for all $b \in B$. Similarly, for the short exact sequence E^{\prime}, we can construct injective resolutions

$$
\begin{aligned}
& \mathcal{I}_{A^{\prime}}: 0 \rightarrow A^{\prime} \xrightarrow{f_{0}{ }^{\prime}} A_{0}{ }^{\prime} \xrightarrow{f_{1}^{\prime}} A_{1}{ }^{\prime} \xrightarrow{f_{2}^{\prime}} \cdots \\
& \mathcal{I}_{B^{\prime}}: 0 \rightarrow B^{\prime} \xrightarrow{g_{0}^{\prime}} B_{0}{ }^{\prime}=A_{0}{ }^{\prime} \oplus C_{0}{ }^{\prime} \xrightarrow{g_{1}{ }^{\prime}} B_{1}{ }^{\prime}=A_{1}{ }^{\prime} \oplus C_{1}{ }^{g_{2}{ }^{\prime}} \cdots \\
& \mathcal{I}_{C^{\prime}}: 0 \rightarrow C^{\prime} \xrightarrow{h_{0}^{\prime}} C_{0}{ }^{h_{1}^{\prime}} C_{1}{ }^{\prime} \xrightarrow{h_{2}^{\prime}} \cdots
\end{aligned}
$$

such that $0 \rightarrow \mathcal{I}_{A^{\prime}} \rightarrow \mathcal{I}_{B^{\prime}} \rightarrow \mathcal{I}_{C^{\prime}} \rightarrow 0$ is exact; we also use two embedding maps $\phi_{0}{ }^{\prime}: B^{\prime} \rightarrow A_{0}{ }^{\prime}$ and $h_{0}{ }^{\prime}: C^{\prime} \rightarrow C_{0}{ }^{\prime}$ to construct the maps $f_{0}{ }^{\prime}$ and $g_{0}{ }^{\prime}$; more precisely, $\phi_{0}{ }^{\prime} \sigma_{0}{ }^{\prime}=f_{0}{ }^{\prime}$ and $g_{0}{ }^{\prime}: B^{\prime} \rightarrow A_{0}{ }^{\prime} \oplus C_{0}{ }^{\prime}$ is defined by $g_{0}{ }^{\prime}\left(b^{\prime}\right)=\left(\phi_{0}{ }^{\prime}\left(b^{\prime}\right), h_{0}^{\prime} \tau_{0}\left(b^{\prime}\right)\right)$ for all $b^{\prime} \in B^{\prime}$.

Because $\alpha: A \rightarrow A^{\prime}$ is an R-module homomorphism, by the Comparison Theorem, there is a cochain map $\hat{\alpha}: \mathcal{I}_{A} \rightarrow \mathcal{I}_{A^{\prime}}$, i.e., the diagram

is commutative. Similarly, since $\gamma: C \rightarrow C^{\prime}$ is an R-module homomorphism, there is a cochain map $\hat{\gamma}: \mathcal{I}_{C} \rightarrow \mathcal{I}_{C^{\prime}}$, i.e, the diagram

is commutative. We want to find a cochain map $\hat{\beta}: \mathcal{I}_{B} \rightarrow \mathcal{I}_{B^{\prime}}$, such that the diagram

is commutative.
First, we want to find an R-module homomorphism $\beta_{0}: A_{0} \oplus C_{0} \rightarrow A_{0}{ }^{\prime} \oplus C_{0}{ }^{\prime}$ such that the 3-dimensional diagram

is commutative. Since we already know that the upper level diagram and the left and the right vertical diagrams are commutative, it remains to show that the lower level diagram and the middle vertical diagram are commutative. First of all, because τ_{0} is onto, for each $c \in C$, there exists $b \in B$ such that $c=\tau_{0}(b)$. If $c=\tau_{0}\left(b_{1}\right)=\tau_{0}\left(b_{2}\right)$ for $b_{1}, b_{2} \in B$, then $\tau_{0}\left(b_{1}-b_{2}\right)=0$, and so $b_{1}-b_{2} \in \operatorname{Ker} \tau_{0}$. Since E is exact, $\operatorname{Ker} \tau_{0}=\operatorname{Im} \sigma_{0}$ and so $b_{1}-b_{2}=\sigma_{0}(a)$ for some $a \in A$. Because $\phi_{0}{ }^{\prime} \sigma_{0}{ }^{\prime}=f_{0}{ }^{\prime}$ and $\phi_{0} \sigma_{0}=f_{0}$, we have

$$
\begin{aligned}
& {\left[\phi_{0}{ }^{\prime} \beta\left(b_{1}\right)-\alpha_{0} \phi_{0}\left(b_{1}\right)\right]-\left[\phi_{0}{ }^{\prime} \beta\left(b_{2}\right)-\alpha_{0} \phi_{0}\left(b_{2}\right)\right] } \\
= & \phi_{0}{ }^{\prime} \beta\left(b_{1}-b_{2}\right)-\alpha_{0} \phi_{0}\left(b_{1}-b_{2}\right) \\
= & \phi_{0}{ }^{\prime} \beta\left(\sigma_{0}(a)\right)-\alpha_{0} \phi_{0}\left(\sigma_{0}(a)\right) \\
= & \phi_{0}{ }^{\prime} \sigma_{0}{ }^{\prime} \alpha(a)-\alpha_{0} \phi_{0}\left(\sigma_{0}(a)\right) \\
= & f_{0}{ }^{\prime} \alpha(a)-\alpha_{0} f_{0}(a) \\
= & \left(\text { since } \beta \sigma_{0}=\sigma_{0}{ }^{\prime} \alpha\right) \\
= & 0 .
\end{aligned}
$$

Thus for all $c \in C$, we can define a map $\mu_{0}: C \rightarrow A_{0}{ }^{\prime}$ by $\mu_{0}(c)=\mu_{0}\left(\tau_{0}(b)\right)=\phi_{0}{ }^{\prime} \beta(b)-$ $\alpha_{0} \phi_{0}(b)$ where $b \in B$ with $\tau_{0}(b)=c$. For all $c_{1}, c_{2} \in C$, there exist $b_{1}, b_{2} \in B$ such that $c_{1}=\tau_{0}\left(b_{1}\right)$ and $c_{2}=\tau_{0}\left(b_{2}\right)$. Then we have $c_{1}+c_{2}=\tau_{0}\left(b_{1}+b_{2}\right)$ and then it is not difficult to check that μ_{0} is an R-module homomorphism. Moreover, because $A_{0}{ }^{\prime}$ is injective,
there exists an R-module homomorphism $\nu_{0}: C_{0} \rightarrow A_{0}{ }^{\prime}$ such that the diagram

is commutative, i.e., $\nu_{0} h_{0}=\mu_{0}$. Therefore, we can define $\beta_{0}: A_{0} \oplus C_{0} \rightarrow A_{0}{ }^{\prime} \oplus C_{0}{ }^{\prime}$ by $\beta_{0}\left(a_{0}, c_{0}\right)=\left(\alpha_{0}\left(a_{0}\right)+\nu_{0}\left(c_{0}\right), \gamma_{0}\left(c_{0}\right)\right)$. It is not difficult to check that the lower level diagram in (1)

is commutative. Now we show that the middle vertical diagram in (1) is commutative, i.e., $\beta_{0} g_{0}=g_{0}{ }^{\prime} \beta$. For all $b \in B$, recall that $g_{0}(b)=\left(\phi_{0}(b), h_{0} \tau_{0}(b)\right)$, so

$$
\begin{aligned}
\beta_{0} g_{0}(b) & =\beta_{0}\left(\phi_{0}(b), h_{0} \tau_{0}(b)\right) & & \\
& =\left(\alpha_{0}\left(\phi_{0}(b)\right)+\nu_{0}\left(h_{0} \tau_{0}(b)\right), \gamma_{0}\left(h_{0} \tau_{0}(b)\right)\right) & & \\
& =\left(\alpha_{0} \phi_{0}(b)+\mu_{0} \tau_{0}(b), h_{0}{ }^{\prime} \gamma \tau_{0}(b)\right) & & \left(\text { since } \nu_{0} h_{0}=\mu_{0} \text { and } \gamma_{0} h_{0}=h_{0}{ }^{\prime} \gamma\right) \\
& =\left(\phi_{0}{ }^{\prime} \beta(b), h_{0}{ }^{\prime} \gamma \tau_{0}(b)\right) & & \left(\text { since } \mu_{0}\left(\tau_{0}(b)\right)=\phi_{0}{ }^{\prime} \beta(b)-\alpha_{0} \phi_{0}(b)\right) \\
& =\left(\phi_{0}{ }^{\prime} \beta(b), h_{0}{ }^{\prime} \tau_{0}{ }^{\prime} \beta(b)\right) & & \left(\text { since } \gamma \tau_{0}=\tau_{0}{ }^{\prime} \beta\right) \\
& =g_{0}{ }^{\prime} \beta(b) . & &
\end{aligned}
$$

Hence $\beta_{0} g_{0}=g_{0}{ }^{\prime} \beta$, and we show that the 3-dimensional diagram (1) is commutative.
Secondly, because the 3-dimensional diagram (1) is commutative, the 3-dimensional diagram

is also commutative, where $\alpha_{0}{ }^{*}:$ Coker $f_{0} \rightarrow$ Coker $f_{0}{ }^{\prime}, \beta_{0}{ }^{*}:$ Coker $g_{0} \rightarrow$ Coker $g_{0}{ }^{\prime}$, $\gamma_{0}{ }^{*}:$ Coker $h_{0} \rightarrow$ Coker $h_{0}{ }^{\prime}$ are the R-module homomorphisms induced by $\alpha_{0}, \beta_{0}, \gamma_{0}$, respectively. Similar as above, we can find an R-module homomorphism $\beta_{1}: A_{1} \oplus C_{1} \rightarrow$ $A_{1}{ }^{\prime} \oplus C_{1}{ }^{\prime}$ such that the 3 -dimensional diagram

is commutative. Combining the 3-dimensional diagrams (1), (2), and (3), we have the commutative 3-dimensional diagram

Finally, continue the same discussion, then we will get R-module homomorphisms β_{n} for all $n \geq 2$ such that the diagram

is commutative. This completes the proof.

Theorem 3.1.9. Let T be a left exact additive functor. Then $\left\{R^{n} T, E^{n}\right\}_{n \geq 0}$ is a universal connected sequence.

Proof. First, we show that $\left\{R^{n} T, E^{n}\right\}_{n \geq 0}$ is a connected sequence, i.e., $\left(R^{n} T, E^{n}, R^{n+1} T\right)$ is a connected pair for all $n \geq 0$. Let $(\alpha, \beta, \gamma): E \rightarrow E^{\prime}$ be a morphism in the category \mathcal{E}, where $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $E^{\prime}: 0 \rightarrow A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime} \rightarrow 0$ are two short exact sequences of R-modules. We want to show that the diagram

$$
\begin{gather*}
R^{n} T(C) \xrightarrow{E^{n}} R^{n+1} T(A) \tag{1}\\
R^{n} T(\gamma) \downarrow \\
R^{n} T\left(C^{\prime}\right) \xrightarrow{\left(E^{\prime}\right)^{n}} R^{n+1} T\left(A^{\prime}\right)
\end{gather*}
$$

is commutative. By Proposition 3.1.8, there exist injective resolutions $\mathcal{I}_{A}, \mathcal{I}_{B}, \mathcal{I}_{C}, \mathcal{I}_{A^{\prime}}$, $\mathcal{I}_{B^{\prime}}, \mathcal{I}_{C^{\prime}}$ of $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$, respectively, and three cochain maps $\hat{\alpha}: \mathcal{I}_{A} \rightarrow \mathcal{I}_{A^{\prime}}$, $\hat{\beta}: \mathcal{I}_{B} \rightarrow \mathcal{I}_{B^{\prime}}$, and $\hat{\gamma}: \mathcal{I}_{C} \rightarrow \mathcal{I}_{C^{\prime}}$ such that the diagram

is commutative. Then the diagram

is commutative. Because the i th level of $0 \rightarrow \mathcal{I}_{A} \rightarrow \mathcal{I}_{B} \rightarrow \mathcal{I}_{C} \rightarrow 0$ is $0 \rightarrow A_{i} \rightarrow$ $A_{i} \oplus C_{i} \rightarrow C_{i} \rightarrow 0$, which is a split short exact sequence, $0 \rightarrow T\left(A_{i}\right) \rightarrow T\left(A_{i} \oplus C_{i}\right) \rightarrow$ $T\left(C_{i}\right) \rightarrow 0$ is exact by Lemma 3.1.4 (4). Similarly, since the i th level of $0 \rightarrow \mathcal{I}_{A^{\prime}} \rightarrow$ $\mathcal{I}_{B^{\prime}} \rightarrow \mathcal{I}_{C^{\prime}} \rightarrow 0$ is $0 \rightarrow A_{i}^{\prime} \rightarrow A_{i}^{\prime} \oplus C_{i}^{\prime} \rightarrow C_{i}^{\prime} \rightarrow 0$, which is a split short exact sequence, $0 \rightarrow T\left(A_{i}^{\prime}\right) \rightarrow T\left(A_{i}^{\prime} \oplus C_{i}^{\prime}\right) \rightarrow T\left(C_{i}^{\prime}\right) \rightarrow 0$ is exact. Thus both rows of the commutative diagram (2) are exact. Therefore, by Lemma 3.1.6, the diagram

is commutative. By the definition of right derived functors, the diagram (1) is just the diagram (3). Hence the diagram (1) is also commutative and so $\left(R^{n} T, E^{n}, R^{n+1}\right)$ is a connected pair for all $n \geq 0$.

Next, we show that the connected sequence $\left\{R^{n} T, E^{n}\right\}_{n \geq 0}$ is universal. Note that for all injective R-modules $I, 0 \rightarrow I \rightarrow I \rightarrow 0$ is an injective resolution of I. Since T is left exact, $0 \rightarrow T(I) \rightarrow T(I) \rightarrow T(0)=0$ is exact and so $R^{n} T(I)=0$ for all $n>0$. On the other hand, by Lemma 3.1.4 (3), for each short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, there is a long exact sequence of cohomology

$$
0 \rightarrow R^{0} T(A) \rightarrow R^{0} T(B) \rightarrow R^{0} T(C) \rightarrow R^{1} T(A) \rightarrow \cdots
$$

Therefore, $\left\{R^{n} T, E^{n}\right\}_{n \geq 0}$ is universal by Corollary 2.3.4. This completes the proof.

Theorem 3.1.10. $\left\{H_{\mathbf{m}}^{n}(-), E^{n}\right\}_{n \geq 0}$ is a universal connected sequence with the initial $H_{\mathbf{m}}^{0}(-)=\Gamma_{\mathbf{m}}(-)$.

Proof. Because $\Gamma_{\mathbf{m}}(-)$ is a left exact additive functor, $\left\{H_{\mathbf{m}}^{n}(-), E^{n}\right\}_{n \geq 0}$ is a universal connected sequence by Theorem 3.1.9. Moreover, by Lemma 3.1.4 (2), we have that $H_{\mathbf{m}}^{0}(-)=\Gamma_{\mathbf{m}}(-)$. The proof is complete.

3.2 Injective hulls

Definition 3.2.1. Suppose $i: N \rightarrow M$ is an R-module embedding map.
(1) M is said to be an essential extension of N if $i^{-1}(U) \neq 0$ for all nonzero submodules U of M.
(2) An essential extension M of N is said to be proper if i is not onto.

Remark 3.2.2. If $i: N \rightarrow M$ is an R-module embedding map, we use the convention that $U \cap N$ denotes the pre-image of U in N, i.e., $U \cap N=i^{-1}(U)$. We also use the notation $N \subsetneq M$ to indicate that i is not onto.

From Definition 3.2.1, we know that for every R-module N, N is an essential extension of N itself. In Proposition 3.2.4, we will show that N has no proper essential extension if and only if N is an injective R-module. Before we prove Proposition 3.2.4, we present a lemma that we need in the proof.

Lemma 3.2.3. Given an R-module monomorphism $\phi: U \rightarrow V$ and an R-module homomorphism $f: U \rightarrow N$, we let $W=(V \oplus N) / C$, where

$$
C=\{(\phi(x),-f(x)) \in V \oplus N \mid x \in U\}
$$

is a submodule of $V \oplus N$. Take $g: V \rightarrow W$ to be the composition of the natural homomorphisms $V \rightarrow V \oplus N \rightarrow W=(V \oplus N) / C$, i.e., $g(v)=(v, 0)+C$ for all $v \in V$; and take $\psi: N \rightarrow W$ to be the composition of the natural homomorphisms
$N \rightarrow V \oplus N \rightarrow W=(V \oplus N) / C$, i.e., $\psi(n)=(0, n)+C$ for all $n \in N$. Then ψ is one-to-one and the diagram

is commutative, i.e., $g \phi=\psi f$.
Proof. First, we show that ψ is one-to-one. Let $n \in \operatorname{Ker} \psi$. Then $(0, n) \in C$ and so $(0, n)=(\phi(x),-f(x))$ for some $x \in U$. Because ϕ is one-to-one, $x=0$ and we get $n=-f(x)=-f(0)=0$. Hence ψ is one-to-one.

Next, we show that $g \phi=\psi f$. Note that for all $x \in U$, since $(\phi(x),-f(x)) \in C$, we have $(\phi(x), 0)+C=(0, f(x))+C$. Thus $g \phi(x)=(\phi(x), 0)+C=(0, f(x))+C=\psi f(x)$ for all $x \in U$. Hence $g \phi=\psi f$.

Proposition 3.2.4. Let N be an R-module. Then N has no proper essential extension if and only if N is an injective R-module.

Proof. Suppose N has no proper essential extension. Now we show that N is injective, i.e., if $\phi: U \rightarrow V$ is an R-module monomorphism and $f: U \rightarrow N$ is an R-module homomorphism, then there exists an R-module homomorphism $\alpha: V \rightarrow N$ such that the diagram

is commutative. By Lemma 3.2.3, there exist an R-module W and R-module homomorphisms $g: V \rightarrow W$ and $\psi: N \rightarrow W$ such that the diagram

is commutative. Moreover, since $\psi: N \rightarrow W$ is a monomorphism, N can be thought as a submodule of W. In order to find an R-module homomorphism α, we consider the set
$\Sigma=\{D \mid D$ is a submodule of W with $D \cap N=0\}$. It not difficult to check that (Σ, \subseteq) is a nonempty partially ordered set and that every chain in Σ has an upper bound. By the Zorn's Lemma, Σ has a maximal element. Let D be a maximal element in Σ. Since $D \cap N=0$, the composition of the homomorphisms $N \xrightarrow{\psi} W \xrightarrow{\pi} W / D$ is one-to-one. So we can also think of N as a submodule of W / D. We want to show that W / D is an essential extension of N. Suppose W / D is not an essential extension of N. Then there exists a nonzero submodule W^{\prime} / D of W / D such that $\left(W^{\prime} / D\right) \cap N=0$, where W^{\prime} is a submodule of W with $D \subsetneq W^{\prime}$. We claim that $W^{\prime} \cap N=0$. Let $x \in W^{\prime} \cap N$. Then $x=\psi(n)$ for some $n \in N$ and we have $x+D=\pi(x)=\pi \psi(n) \in\left(W^{\prime} / D\right) \cap N$. Because $\left(W^{\prime} / D\right) \cap N=0, x \in D$. Thus $x \in D \cap N=0$. So we have $W^{\prime} \cap N=0$. Then $W^{\prime} \in \Sigma$ with $D \subsetneq W^{\prime}$. This contradicts the fact that D is a maximal element in Σ. Therefore, W / D is an essential extension of N. By assumption, $N=W / D$, i.e. $\pi \psi: N \rightarrow W / D$ is an isomorphism. Then there is an R-module homomorphism $\delta: W / D \rightarrow N$ such that $\delta(\pi \psi)=1_{N}$, i.e., the diagram

is commutative. Combining the diagrams (1) and (2), we get the commutative diagram

Take $\alpha=\delta \pi g$, then we have $\alpha \phi=(\delta \pi g) \phi=\delta \pi \psi f=1_{N} f=f$. Hence N is injective.
Conversely, suppose N is an injective R-module. We claim that N has no proper essential extension. Suppose that M is a proper essential extension of N. Because N is injective, N is a direct summand of M, i.e., there is a submodule M_{1} of M such that $M_{1} \cap N=0$ and $M=N+M_{1}$. Since $N \subsetneq M, M_{1} \neq 0$. This contradicts the fact that M is a proper essential extension of N. Hence N has no proper essential extension.

Definition 3.2.5. Let M be an R-module. An injective R-module E is said to be an injective hull of M if E is an essential extension of M. We denote E by $E(M)$.

Now we show the existence of injective hulls of M and some properties related to injective hulls of M.

Lemma 3.2.6. Let M be an R-module.
(1) M has an injective hull.
(2) Let E be an injective hull of M and let I be an injective R-module. If $f: M \rightarrow I$ is an R-module monomorphism, then there exists an R-module monomorphism ϕ : $E \rightarrow I$ such that the diagram

is commutative, where $i: M \rightarrow E$ is the embedding map.
(3) If E and E^{\prime} are injective hulls of M, then there exists an R-module isomorphism $\phi: E \rightarrow E^{\prime}$ such that the diagram

is commutative, where i and i_{1} are the embedding maps.
Proof. For (1), M can be embedded to an injective R-module I. We think of M as a submodule of I, i.e., $M \subseteq I$. Consider the set

$$
\Sigma=\{E \mid E \subseteq I \text { and } E \text { is an essential extension of } M\} .
$$

Then (Σ, \subseteq) is a nonempty partially ordered set since $M \in \Sigma$. Now we show that every chain $\left\{E_{i}\right\}_{i \in I}$ in Σ has an upper bound. Take $N=\bigcup_{i \in I} E_{i}$. Then N is an R-module with $M \subseteq N \subseteq I$. Let N_{1} be a nonzero submodule of N. Then there exists $x \in N_{1}$ such that $x \neq 0$. So $x \in E_{i}$ for some $i \in I$. Thus $R x$ is a nonzero submodule of E_{i}, and so
$R x \cap M \neq 0$ since E_{i} is an essential extension of M. Therefore we have $N_{1} \cap M \neq 0$. Thus N is an essential extension of M and so $N \in \Sigma$. Hence N is an upper bound of the chain $\left\{E_{i}\right\}_{i \in I}$. By the Zorn's Lemma, Σ has a maximal element. Let E be a maximal element in Σ. We claim that E is an injective hull of M. Because E is an essential extension of M, by Definition 3.2.4, it remains to show that E is an injective R-module. However, by Proposition 3.2.3, it is enough to show that E has no proper essential extension. Suppose that E^{\prime} is a proper essential extension of E. Because I is injective, there exists an R-module homomorphism $\psi: E^{\prime} \rightarrow I$ such that the diagram

is commutative, where i_{1} and i_{2} are embedding maps. Note that if $\operatorname{Ker} \psi \neq 0$, then $\operatorname{Ker} \psi \cap E \neq 0$ since E^{\prime} is an essential extension of E. However for $a \in \operatorname{Ker} \psi \cap E$,

$$
0=\psi(a)=\psi\left(i_{1}(a)\right)=i_{2}(a)=a .
$$

Therefore $\operatorname{Ker} \psi=0$, i.e., ψ is one-to-one. Because $E \subsetneq E^{\prime}$ and $\operatorname{Ker} \psi=0, E \subsetneq \operatorname{Im} \psi \subseteq I$. Now we claim that $\operatorname{Im} \psi$ is an essential extension of M. We know that every nonzero submodule of $\operatorname{Im} \psi$ is of the form $\psi\left(E_{1}{ }^{\prime}\right)$, where $0 \subsetneq E_{1}{ }^{\prime} \subseteq E^{\prime}$ since ψ is one-to-one. Then

$$
\left.\begin{array}{rl}
& E_{1}^{\prime} \cap E \neq 0 \\
\Rightarrow & \left(E_{1}^{\prime} \cap E\right) \cap M \neq 0 \\
\Rightarrow & \psi\left(\left(E_{1}^{\prime} \cap E\right) \cap M\right) \neq 0 \\
\Rightarrow & \psi\left(\text { since } E^{\prime} \text { is an essential extension of } E \text { is an essential extension of } M\right. \text {) } \\
\Rightarrow & \psi\left(E_{1}^{\prime} \cap E\right) \cap M \neq 0
\end{array} \quad \text { (since } \psi \text { is one-to-one-to-one again) }\right)
$$

Thus $\operatorname{Im} \psi$ is an essential extension of M. Then $\operatorname{Im} \psi \in \Sigma$ with $E \subsetneq \operatorname{Im} \psi$ and this contradicts the fact that E is a maximal element in Σ. Hence E has no proper essential extension. Therefore, E is a injective hull of M.

For (2), since I is an injective R-module, there exists an R-module homomorphism
$\phi: E \rightarrow I$ such that the diagram

is commutative. Because $\left.\phi\right|_{M}=f, M \cap \operatorname{Ker} \phi=\operatorname{Ker} f=0$. Then $\operatorname{Ker} \phi=0$ since E is an essential extension of M.

For (3), by (2), there exists an R-module monomorphism $\phi: E \rightarrow E^{\prime}$ such that the diagram

is commutative. Thus $\operatorname{Im} \phi \cong E$. Because $\operatorname{Im} \phi$ is injective and $\operatorname{Im} \phi$ is a submodule of $E^{\prime}, \operatorname{Im} \phi$ is a direct summand of E^{\prime}, i.e., there exists a submodule $E_{1}{ }^{\prime}$ of E^{\prime} such that $E_{1}{ }^{\prime} \cap \operatorname{Im} \phi=0$ and $E^{\prime}=\operatorname{Im} \phi+E_{1}{ }^{\prime}$. Moreover, we have $E_{1}{ }^{\prime} \cap M=0$ since $M \subseteq \operatorname{Im} \phi$. Therefore, by the fact that E^{\prime} is an essential extension of $M, E_{1}{ }^{\prime}=0$. Hence $\operatorname{Im} \phi=E^{\prime}$ and so ϕ is indeed an R-module isomorphism.

Definition 3.2.7. Let M be an R-module.
(1) $\operatorname{AssM}=\{\mathbf{p} \in \operatorname{Spec}(R) \mid$ there is an R-module monomorphism $f: R / \mathbf{p} \rightarrow M\}$. If $\mathbf{p} \in A s s M, \mathbf{p}$ is said to be an associate prime of M.
(2) M is said to be decomposable if there exist two nonzero submodules M_{1}, M_{2} of M such that $M_{1} \cap M_{2}=0$ and $M=M_{1} \oplus M_{2}$. Otherwise, M is said to be indecomposable.

In the next proposition, we will show that an R-module M is indecomposable injective if and only if $M \cong E(R / \mathbf{p})$ for some $\mathbf{p} \in \operatorname{Spec}(R)$. Before we prove Proposition 3.2.9, we present a lemma that we need in the proof.

Lemma 3.2.8. Let M be a nonzero R-module. Then AssM is nonempty.
Proof. Since $M \neq 0$, we consider the set $\Sigma=\{\operatorname{Ann}(m) \mid m \in M, m \neq 0\}$. Because R is a Noetherian ring, Σ has a maximal element. Let $\operatorname{Ann}(x)$ be a maximal element in Σ. Now we show that $\operatorname{Ann}(x)$ is a prime ideal. Suppose $a b \in \operatorname{Ann}(x)$. Then $(a b) x=0$. Thus we have $a(b x)=0$, and so $a \in \operatorname{Ann}(b x)$. Note that if $b x=0$, then $b \in \operatorname{Ann}(x)$. On the other hand, if $b x \neq 0$, then $\operatorname{Ann}(b x) \in \Sigma$. However, we know that $\operatorname{Ann}(x) \subseteq \operatorname{Ann}(b x)$, so by maximality of $\operatorname{Ann}(x), A n n(x)=A n n(b x)$ and so $a \in A n n(x)$. Hence $A n n(x)$ is a prime ideal. Moreover, let $f: R \rightarrow M$ be the R-module homomorphism defined by $f(r)=r x$ for all $r \in R$. Because $\operatorname{Ann}(x)=\operatorname{Ker} f$, there exists an R-module monomorphism $\phi: R / \operatorname{Ann}(x) \rightarrow M$. Therefore, $\operatorname{Ann}(x) \in A s s M$ and the proof is complete.

Proposition 3.2.9. A nonzero R-module M is indecomposable injective if and only if $M \cong E(R / \mathbf{p})$ for some $\mathbf{p} \in \operatorname{Spec}(R)$.

Proof. Suppose M is a nonzero indecomposable injective R-module. Because $M \neq 0$, $A s s M$ is nonempty. Let $\mathbf{p} \in A s s M$. Then $\mathbf{p} \in \operatorname{Spec}(R)$ and there is an R-module monomorphism $f: R / \mathbf{p} \rightarrow M$. By Lemma 3.2 .6 (2), there exists an R-module monomorphism $\phi: E(R / \mathbf{p}) \rightarrow M$ such that the diagram

is commutative. Because $E(R / \mathbf{p})$ is injective, there is a submodule M^{\prime} of M such that $M \cong E(R / \mathbf{p}) \oplus M^{\prime}$. By the fact that M is indecomposable, we have $M^{\prime}=0$ and so $M \cong E(R / \mathbf{p})$.

Conversely, suppose $M \cong E(R / \mathbf{p})$ for some $\mathbf{p} \in \operatorname{Spec}(R)$. Since $E(R / \mathbf{p})$ is injective, it remains to show that $E(R / \mathbf{p})$ is indecomposable. Suppose that $E(R / \mathbf{p})$ is decomposable. Then there exist nonzero submodules M_{1} and M_{2} of $E(R / \mathbf{p})$ such that $M_{1} \cap M_{2}=0$ and $E(R / \mathbf{p})=M_{1}+M_{2}$. We take $N_{1}=R / \mathbf{p} \cap M_{1}$ and $N_{2}=R / \mathbf{p} \cap M_{2}$. Because $E(R / \mathbf{p})$ is an essential extension of $R / \mathbf{p}, N_{1} \neq 0$ and $N_{2} \neq 0$. On the other hand, since R / \mathbf{p} is an integral domain, $N_{1} N_{2} \neq 0$ as ideals in R / \mathbf{p}. Because $N_{1} N_{2} \subseteq N_{1} \cap N_{2}$, we have
$N_{1} \cap N_{2} \neq 0$ and so $M_{1} \cap M_{2} \neq 0$. This contradicts the fact that $M_{1} \cap M_{2}=0$. Hence $E(R / \mathbf{p})$ is indecomposable. This completes the proof.

From Proposition 3.2.9, we know that every nonzero indecomposable injective R module is of the form $E(R / \mathbf{p})$ for some $\mathbf{p} \in \operatorname{Spec}(R)$. In Proposition 3.2.11, we will show that every nonzero injective R-module is a direct sum of indecomposable injective R-modules. In the proof of Proposition 3.2.11, we will use the following lemma.

Lemma 3.2.10. Let $\left\{M_{j} \mid j \in J\right\}$ be a family of R-modules. Then $\bigoplus_{j \in J} M_{j}$ is injective if and only if M_{j} is injective for every $j \in J$.

Proposition 3.2.11. Let I be a nonzero injective R-module. Then I is a direct sum of indecomposable injective R-modules.

Proof. Because $I \neq 0$, AssI is nonempty by Lemma 3.2.8. Let $\mathbf{p} \in A s s I$, i.e., $\mathbf{p} \in$ $\operatorname{Spec}(R)$ and there is an R-module monomorphism $f: R / \mathbf{p} \rightarrow I$. By Lemma 3.2.6 (2), there exists an R-module monomorphism $\phi: E(R / \mathbf{p}) \rightarrow I$ such that the diagram

is commutative. Then we can consider $E(R / \mathbf{p})$ as a submodule of I. Let

$$
\begin{gathered}
\Sigma=\left\{S=\left\{E_{j} \mid j \in J\right\} \mid E_{j} \text { is an indecomposable injective submodule of } I\right. \text { for every } \\
\left.j \in J \text { and } \bigoplus_{j \in J} E_{j}=\sum_{j \in J} E_{j}\right\} .
\end{gathered}
$$

Since $E(R / \mathbf{p}) \subseteq I, S=\{E(R / \mathbf{p})\} \in \Sigma$ and so Σ is nonempty. Now we show that every chain in Σ has an upper bound. Let $\mathcal{C}=\left\{S_{k} \mid k \in K\right\}$ be a chain of Σ. We claim that $S=\bigcup_{k \in K} S_{k}$ is in Σ. Since every element in S is an indecomposable injective submodule of I, it remains to show $\bigoplus_{E \in S} E=\sum_{E \in S} E$, i.e., $E \cap \sum_{E^{\prime} \in S, E^{\prime} \neq E} E^{\prime}=0$ for all $E \in S$. Let $E \in S$ and let $a \in E \cap \sum_{E^{\prime} \in S, E^{\prime} \neq E} E^{\prime}$. Then $a=\sum_{i=1}^{n} e_{i}^{\prime}$ for some $e_{i}^{\prime} \in E_{i}^{\prime}$, $E_{i}{ }^{\prime} \in S \backslash\{E\}$. Because \mathcal{C} is a chain, there exists $S_{k} \in \mathcal{C}$ such that $E \in S_{k}$ and $E_{i}{ }^{\prime} \in S_{k}$ for all $i=1,2, \cdots, n$. Thus $E \cap \sum_{i=1}^{n} E_{i}^{\prime}=0$ and so we have that $a=0$. Therefore,
$E \cap \sum_{E^{\prime} \in S, E^{\prime} \neq E} E^{\prime}=0$ and so $\mathcal{C}=\left\{S_{k} \mid k \in K\right\}$ has an upper bound $S=\bigcup_{k \in K} S_{k}$. By the Zorn's Lemma, Σ has a maximal element. Let $S_{J}=\left\{E_{j} \mid j \in J\right\}$ be a maximal element in Σ. Now we show that $I=\bigoplus_{j \in J} E_{j}$. Because E_{j} is an injective submodule of I for every $j \in J, \bigoplus_{j \in J} E_{j}$ is an injective submodule of I by Lemma 3.2.10. Thus there exists a submodule I_{1} of I such that $I_{1} \cap \bigoplus_{j \in J} E_{j}=0$ and $I=I_{1}+\left(\bigoplus_{j \in J} E_{j}\right)$. By Lemma 3.2.10 again, I_{1} is injective since I is injective and $I=I_{1} \oplus\left(\bigoplus_{j \in J} E_{j}\right)$. We claim that $I_{1}=0$. Suppose $I_{1} \neq 0$. By Lemma 3.2.8, Ass I_{1} is nonempty. Therefore there exists $\mathbf{p}_{1} \in A$ ssI I, i.e., $\mathbf{p}_{1} \in \operatorname{Spec}(R)$ and there is an R-module monomorphism $f_{1}: R / \mathbf{p}_{1} \rightarrow I_{1}$. Moreover, because I_{1} is injective, by Lemma 3.2.6 (2), there exists an R-module monomorphism $\phi_{1}: E\left(R / \mathbf{p}_{1}\right) \rightarrow I_{1}$ such that the diagram

is commutative. Hence we can consider $E\left(R / \mathbf{p}_{1}\right)$ as a submodule of I_{1}. Because $I_{1} \cap$ $\left(\bigoplus_{j \in J} E_{j}\right)=0, E\left(R / \mathbf{p}_{1}\right) \cap\left(\bigoplus_{j \in J} E_{j}\right)=0$. Thus $S_{J} \cup\left\{E\left(R / \mathbf{p}_{1}\right)\right\} \in \Sigma$ and $S_{J} \subsetneq$ $S_{J} \cup\left\{E\left(R / \mathbf{p}_{1}\right)\right\}$. This contradicts the fact that S_{J} is a maximal element in Σ. Hence $I_{1}=0$ and so $I=\bigoplus_{j \in J} E_{j}$. This completes the proof.

From Proposition 3.2.9 and Proposition 3.2.11, we see that a nonzero injective R module I is a direct sum of $E(R / \mathbf{p})$ for some $\mathbf{p} \in \operatorname{Spec}(R)$. In the next lemma, we will show that $H^{0}(-\otimes \mathcal{C})=\Gamma_{\mathbf{m}}(-)$, i.e., $H^{0}(A \otimes \mathcal{C}) \cong \Gamma_{\mathbf{m}}(A)$ for all R-module A.

Lemma 3.2.12. Let A be an R-module and assume the ideal $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is \mathbf{m}-primary. Then $H^{0}(A \otimes \mathcal{C}) \cong \Gamma_{\mathbf{m}}(A)$, where \mathcal{C} is the Čech complex with respect to the sequence $x_{1}, x_{2}, \ldots, x_{n}$.

Proof. Because R is a Noetherian local ring with the maximal ideal \mathbf{m} and $\mathbf{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is \mathbf{m}-primary, $\mathbf{m}^{s} \subseteq \mathbf{x} \subseteq \mathbf{m}$ for some $s>0$. Then it is not difficult to check that

$$
\Gamma_{\mathbf{m}}(A)=\left\{y \in A \mid \mathbf{x}^{k} y=0 \text { for some } k \geq 0\right\}
$$

Using the facts: $A \otimes R \cong A, A \otimes\left(\bigoplus_{i=1}^{n} R_{x_{i}}\right) \cong \bigoplus_{i=1}^{n}\left(A \otimes R_{x_{i}}\right)$, and $A \otimes R_{x_{i}} \cong A_{x_{i}}$ for all $i=1,2, \cdots, n$, we see that

$$
H^{0}(A \otimes \mathcal{C})=\operatorname{Ker}\left(A \otimes R \longrightarrow A \otimes\left(\bigoplus_{i=1}^{n} R_{x_{i}}\right)\right) \cong \operatorname{Ker}\left(A \longrightarrow \bigoplus_{i=1}^{n} A_{x_{i}}\right)
$$

Now we show that $\Gamma_{\mathbf{m}}(A)=\operatorname{Ker}\left(A \longrightarrow \bigoplus_{i=1}^{n} A_{x_{i}}\right)$.

- Let $y \in \Gamma_{\mathbf{m}}(A)$. Then $\mathbf{x}^{k} y=0$ for some $k \geq 0$. So we have $x_{i}^{k} y=0$ for all $i=1,2, \cdots, n$. Therefore, $\left(\frac{y}{1}, \frac{y}{1}, \cdots, \frac{y}{1}\right)=0$ in $\bigoplus_{i=1}^{n} A_{x_{i}}$ and so $y \in \operatorname{Ker}(A \longrightarrow$ $\left.\bigoplus_{i=1}^{n} A_{x_{i}}\right)$. Hence $\Gamma_{\mathbf{m}}(A) \subseteq \operatorname{Ker}\left(A \longrightarrow \bigoplus_{i=1}^{n} A_{x_{i}}\right)$.
- Conversely, let $a \in \operatorname{Ker}\left(A \longrightarrow \bigoplus_{i=1}^{n} A_{x_{i}}\right)$. Then $\left(\frac{a}{1}, \frac{a}{1}, \cdots, \frac{a}{1}\right)=0$ in $\bigoplus_{i=1}^{n} A_{x_{i}}$. Therefore, for each $i=1,2, \cdots, n$, there exists $t_{i} \in \mathbb{N}$ such that $x_{i}^{t_{i}} a=0$. Take $t=\sum_{i=1}^{n} t_{i}$, then $\mathbf{x}^{t} a=0$ and so we have that $a \in \Gamma_{\mathbf{m}}(A)$. Hence $\operatorname{Ker}(A \longrightarrow$ $\left.\bigoplus_{i=1}^{n} A_{x_{i}}\right) \subseteq \Gamma_{\mathbf{m}}(A)$.

Therefore $\Gamma_{\mathbf{m}}(A)=\operatorname{Ker}\left(A \longrightarrow \bigoplus_{i=1}^{n} A_{x_{i}}\right)$. Hence $H^{0}(A \otimes \mathcal{C}) \cong \Gamma_{\mathbf{m}}(A)$ and the proof is complete.

3.3 Čech complexes vs universal connected sequences

In Theorem 3.3.5, we will show that $\left\{H^{n}(-\otimes \mathcal{C}), E^{n}\right\}_{n \geq 0}$ is a universal connected sequence. Before we prove Theorem 3.3.5, we present some lemmas that we need in the proof.

Lemma 3.3.1. Let M be an R-module and let S be a multiplicative closed set in R. Then as R_{S}-modules, $E(M)_{S}$ is an essential extension of M_{S}.

Proof. It suffices show that $R_{S} x \cap M_{S} \neq 0$ for all nonzero $x \in E(M)_{S}$. Because $x \in E(M)_{S}, x=\frac{y}{s_{1}}$ for some $y \in E(M)$ and $s_{1} \in S$. It is not difficult to check that

$$
R_{S} x=R_{S} y .
$$

Since $x \neq 0$ in $E(M)_{S}, t y \neq 0$ for all $t \in S$. We consider the set

$$
\Sigma=\{\operatorname{Ann}(s y) \mid s \in S\} .
$$

Because R is a Noetherian ring, Σ has a maximal element. Let $A n n(t y)$ with $t \in S$ be a maximal element in Σ. Then we have that

$$
R_{S} x=R_{S} y=R_{S} t y
$$

Since $E(M)$ is an essential extension of M and since $t y \neq 0, R(t y) \cap M=I(t y) \neq 0$, where $I=\left(M:_{R} t y\right)$ is an ideal of R. Again by the fact that R is a Noetherian ring, $I=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ for some elements $a_{1}, a_{2}, \cdots, a_{n} \in R$. Now we show that there exists a_{i} such that $s\left[a_{i}(t y)\right] \neq 0$ for all $s \in S$. Suppose that for each $i=1,2, \cdots, n$, there exists $s_{i} \in S$ such that $s_{i}\left[a_{i}(t y)\right]=0$. Take $s=\prod_{i=1}^{n} s_{i}$, then $s\left[a_{i}(t y)\right]=0$ for all $i=1,2, \cdots, n$. Thus we have that $a_{i} \in \operatorname{Ann}($ sty $)$ for all $i=1,2, \cdots, n$. On the other hand, since $A n n(t y) \subseteq A n n(s t y)$ and since $A n n(t y)$ is a maximal element in $\Sigma, \operatorname{Ann}(t y)=\operatorname{Ann}($ sty $)$. So we get $a_{i} \in \operatorname{Ann}(t y)$ for all $i=1,2, \cdots, n$. Therefore, $I \subseteq A n n(t y)$, i.e., $I(t y)=0$. It contradicts to $I(t y) \neq 0$, so there exists a_{i} such that $s\left[a_{i}(t y)\right] \neq 0$ for all $s \in S$. Hence $\frac{a_{i}(t y)}{1} \in(R(t y) \cap M)_{S}=R_{S}(t y) \cap M_{S}=R_{S} x \cap M_{S}$ and $\frac{a_{i}(t y)}{1} \neq 0$ in $E(M)_{S}$. Therefore, $R_{S} x \cap M_{S} \neq 0$ for all nonzero $x \in E(M)_{S}$.

Lemma 3.3.2. Let $\mathbf{p} \in \operatorname{Spec} R$ and let $y \in R$.
(1) If $y \in \mathbf{p}$, then $E(R / \mathbf{p})_{y}=0$.
(2) If $y \notin \mathbf{p}$, then $y E(R / \mathbf{p})=E(R / \mathbf{p})$.

Proof. For (1), because $y \in \mathbf{p},(R / \mathbf{p})_{y}=0$. By Lemma 3.3.1, $E(R / \mathbf{p})_{y}$ is an essential extension of $(R / \mathbf{p})_{y}$. Therefore $E(R / \mathbf{p})_{y}=0$.

For (2), consider the R-module homomorphism $f: E(R / \mathbf{p}) \rightarrow E(R / \mathbf{p})$ defined by $f(a)=y a$ for all $a \in E(R / \mathbf{p})$. Now we claim that f is one-to-one, i.e., $\operatorname{Ker} f=0$. Suppose $\operatorname{Ker} f \neq 0$. Because $\operatorname{Ker} f$ is a nonzero submodule of $E(R / \mathbf{p})$ and $E(R / \mathbf{p})$ is an essential extension of R / \mathbf{p}, $\operatorname{Ker} f \cap R / \mathbf{p} \neq 0$. However for $a \in \operatorname{Ker} f \cap R / \mathbf{p}$, $a=r+\mathbf{p}$ for some $r \in R$. Thus $0=f(a)=f(r+\mathbf{p})=y r+\mathbf{p}$, and so we have $y r \in \mathbf{p}$. Since \mathbf{p} is a prime ideal and since $y \notin \mathbf{p}, r \in \mathbf{p}$, i.e., $a=r+\mathbf{p}=0$ in R / \mathbf{p}. Hence $\operatorname{Ker} f \cap R / \mathbf{p}=0$ and we get a contradiction. Thus $\operatorname{Ker} f=0$, i.e., f is one-toone. By the First Isomorphism Theorem, $E(R / \mathbf{p}) \cong \operatorname{Im} f=y E(R / \mathbf{p})$. Then $y E(R / \mathbf{p})$
is injective since $E(R / \mathbf{p})$ is injective. Moreover, because $y E(R / \mathbf{p})$ is a submodule of $E(R / \mathbf{p}), y E(R / \mathbf{p})$ is a direct summand of $E(R / \mathbf{p})$, i.e., there exists a submodule M_{1} of $E(R / \mathbf{p})$ such that $E(R / \mathbf{p})=y E(R / \mathbf{p}) \oplus M_{1}$. However, $E(R / \mathbf{p})$ is indecomposable, by Proposition 3.2.9, so $M_{1}=0$. Therefore, $y E(R / \mathbf{p})=E(R / \mathbf{p})$.

Remark 3.3.3. In the proof of Lemma 3.3.2(2), we have that the R-module homomorphism $f: E(R / \mathbf{p}) \rightarrow E(R / \mathbf{p})$, defined by $f(a)=$ ya for all $a \in E(R / \mathbf{p})$, is one-to-one, and $\operatorname{Im} f=y E(R / \mathbf{p})$. Therefore, for every $a \in E(R / \mathbf{p})$, there exists a unique element $b \in E(R / \mathbf{p})$ such that $a=y b$. Similarly, because $y \notin \mathbf{p}$ and \mathbf{p} is prime, $y^{s} \notin \mathbf{p}$ for all $s \in \mathbb{N}$. Thus for every $a \in E(R / \mathbf{p})$ and for every $s \in \mathbb{N}$, there exists a unique element $b \in E(R / \mathbf{p})$ such that $a=y^{s} b$. In particular, if $a \in E(R / \mathbf{p})$ such that $y^{s} a=0$, then $a=0$.

Notation 3.3.4. In the proof of Theorem 3.3.5, we need to use some special notations.
(1) For $t \geqslant 1$ and $1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n$, we let $e_{i_{1} i_{2} \ldots i_{t}}$ to represent the component $R_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}$ in $C^{t}=\bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} R_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}$. Hence, we can write

$$
C^{t}=\bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} R_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} R_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}} e_{i_{1} i_{2} \ldots i_{t}} .
$$

Similarly, we also write

$$
\bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}} e_{i_{1} i_{2} \ldots i_{t}},
$$

where $\mathbf{p} \in \operatorname{Spec}(R)$. We also use the convention that $e_{j_{1} j_{2} \ldots j_{t}}=e_{i_{1 i_{2} \ldots i_{t}}}$ as long as $\left\{j_{1}, j_{2}, \ldots, j_{t}\right\}=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$.
(2) For two disjoint subsets X and Y of $\{1,2, \ldots, n\}$, we let $\delta(X, Y)=(-1)^{|Z|}$, where $Z=\{(a, b) \in X \times Y \mid a<b\}$. Note that if $X=X_{1} \cup X_{2}$ is a disjoint union, then $Z=\{(a, b) \in X \times Y \mid a<b\}=\left\{(a, b) \in X_{1} \times Y \mid a<b\right\} \cup\{(a, b) \in$ $\left.X_{2} \times Y \mid a<b\right\}$ is a disjoint union and so $\delta(X, Y)=\delta\left(X_{1}, Y\right) \cdot \delta\left(X_{2}, Y\right)$. Moreover, if $i, j \in\{1,2, \ldots, n\}$ are distinct, then $\delta(\{i\},\{j\}) \cdot \delta(\{j\},\{i\})=-1$. With this
new notation, the component $R_{x_{i_{1}} \cdots x_{i_{t}}} \rightarrow R_{x_{j_{1}} x_{j_{2}} \cdots x_{j_{t+1}}}$, that gives the differentiation $d^{t}: C^{t} \rightarrow C^{t+1}$, can be rewritten as

$$
\begin{cases}\delta\left(\left\{i_{1}, i_{2}, \ldots, i_{t}\right\},\left\{j_{s}\right\}\right) \cdot \text { nat }: R_{x_{i_{1}} \cdots x_{i_{t}}} \rightarrow\left(R_{x_{i_{1}} \cdots x_{i_{t}}}\right)_{x_{j_{s}}} & \text { if }\left\{j_{1}, \ldots, j_{t+1}\right\}=\left\{i_{1}, \ldots, i_{t}\right\} \cup\left\{j_{s}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Recall that nat : $R_{x_{i_{1}} \cdots x_{i_{t}}} \rightarrow\left(R_{x_{i_{1}} \cdots x_{i_{t}}}\right)_{x_{j_{s}}}$ is the natural R-module homomorphism defined by $\frac{r}{\left(x_{i_{1}} \cdots x_{i_{t}}\right)^{l}} \mapsto \frac{x_{j_{s}}^{l} r}{\left(x_{i_{1}} \cdots x_{i_{t}} x_{j_{s}}\right)^{2}}$.

Theorem 3.3.5. Let $x_{1}, x_{2}, \cdots, x_{n} \in R$ such that the ideal $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is \mathbf{m} primary and let \mathcal{C} be the Čech complex with respect to the sequence $x_{1}, x_{2}, \ldots, x_{n}$. Then $\left\{H^{t}(-\otimes \mathcal{C}), E^{t}\right\}_{t \geq 0}$ is a universal connected sequence.

Proof. First of all, we show that $\left\{H^{t}(-\otimes \mathcal{C}), E^{t}\right\}_{t \geq 0}$ is a connected sequence, i.e., $\left(H^{t}(-\otimes \mathcal{C}), E^{t}, H^{t+1}(-\otimes \mathcal{C})\right)$ is a connected pair for all $t \geq 0$. Let $(\alpha, \beta, \gamma): E \rightarrow E^{\prime}$ be a morphism in the category \mathcal{E}, where $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $E^{\prime}: 0 \rightarrow$ $A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime} \rightarrow 0$ are two short exact sequences of R-modules. For all $t=0,1, \cdots, n$, because the t th term C^{t} in \mathcal{C} is a flat R-module, the diagram

is commutative with both rows exact. In other words, the diagram

is commutative. By Lemma 3.1.6, we have that the diagram

is commutative for all $t \geq 0$. Hence $\left(H^{t}(-\otimes \mathcal{C}), E^{t}, H^{t+1}(-\otimes \mathcal{C})\right)$ is a connected pair for all $t \geq 0$. Therefore, $\left\{H^{t}(-\otimes \mathcal{C}), E^{t}\right\}_{t \geq 0}$ is a connected sequence.

Next, we show that $\left\{H^{t}(-\otimes \mathcal{C}), E^{t}\right\}_{t \geq 0}$ is universal. Let $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of R-modules. For all $t=0,1, \cdots, n$, because the t th term C^{t} in \mathcal{C} is a flat R-module, the sequence

$$
0 \longrightarrow A \otimes C^{t} \longrightarrow B \otimes C^{t} \longrightarrow C \otimes C^{t} \longrightarrow 0
$$

is exact. Hence the sequence of complexes

$$
0 \longrightarrow A \otimes \mathcal{C} \longrightarrow B \otimes \mathcal{C} \longrightarrow C \otimes \mathcal{C} \longrightarrow 0
$$

is exact. By Lemma 3.1.5, there is a long exact sequence of cohomology

$$
\cdots \rightarrow H^{t}(A \otimes \mathcal{C}) \rightarrow H^{t}(B \otimes \mathcal{C}) \rightarrow H^{t}(C \otimes \mathcal{C}) \xrightarrow{E^{t}} H^{t+1}(A \otimes \mathcal{C}) \rightarrow \cdots
$$

By Corollary 2.3.4, it remains to show that if I is an injective R-module, then $H^{t}(I \otimes$ $\mathcal{C})=0$ for all $t>0$. Let I be an injective R-module. From Proposition 3.2.9 and Proposition 3.2.11, we know that $I=\bigoplus_{j \in J} E\left(R / \mathbf{p}_{j}\right)$, where $\left\{\mathbf{p}_{j} \mid j \in J\right\}$ is a family of prime ideals of R. Note that $\left(\bigoplus_{j \in J} E\left(R / \mathbf{p}_{j}\right)\right) \otimes A \cong \bigoplus_{j \in J}\left(E\left(R / \mathbf{p}_{j}\right) \otimes A\right)$ for all R module A. Hence, we only need to take care of the case where $I=E(R / \mathbf{p})$ for some $\mathbf{p} \in$ $\operatorname{Spec}(R)$. In other words, it suffices to show that if $\mathbf{p} \in \operatorname{Spec}(R)$, then $H^{t}(E(R / \mathbf{p}) \otimes \mathcal{C})=0$ for all $t>0$. We separate the discussion into two situations.

Suppose that $\mathbf{p}=\mathbf{m}$. Because the ideal $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is \mathbf{m}-primary, we have $x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}} \in \mathbf{m}$ for $t \geqslant 1$ and $1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n$. By Lemma 3.3.2 (1),
 have that

$$
\begin{aligned}
E(R / \mathbf{p}) \otimes C^{t} & =E(R / \mathbf{p}) \otimes\left(\bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} R_{x_{i_{1} x_{i_{2}} \cdots x_{i_{t}}}}\right) \\
& =\bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}} \\
& =0 .
\end{aligned}
$$

Therefore the complex $E(R / \mathbf{p}) \otimes \mathcal{C}$ is

$$
0 \rightarrow E(R / \mathbf{p}) \rightarrow 0 \rightarrow 0 \rightarrow \cdots
$$

and so $H^{t}(E(R / \mathbf{p}) \otimes \mathcal{C})=0$ for all $t>0$.

Suppose that $\mathbf{p} \neq \mathbf{m}$. Because \mathbf{m} is the unique maximal ideal of $R, \mathbf{p} \subsetneq \mathbf{m}$. Since $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is \mathbf{m}-primary, there exists x_{j} such that $x_{j} \notin \mathbf{p}$. Now we fix the index j and consider the natural R-module homomorphism $\iota: E(R / \mathbf{p}) \rightarrow E(R / \mathbf{p})_{x_{j}}$, i.e., $\iota(a)=\frac{a}{1}$ for all $a \in E(R / \mathbf{p})$. Note that

$$
a \in \operatorname{Ker} \iota \Rightarrow \frac{a}{1}=0 \text { in } E(R / \mathbf{p})_{x_{j}} \Rightarrow x_{j}^{k} a=0 \text { in } E(R / \mathbf{p}) \Rightarrow a=0 \text { in } E(R / \mathbf{p})
$$

where the last implication follows from Remark 3.3.3. Hence the natural R-module homomorphism $\iota: E(R / \mathbf{p}) \rightarrow E(R / \mathbf{p})_{x_{j}}$ is one-to-one. Moreover, since $E(R / \mathbf{p})$ is an injective R-module, there exists an R-module homomorphism $g: E(R / \mathbf{p})_{x_{j}} \rightarrow E(R / \mathbf{p})$ such that $g \iota=1_{E(R / \mathbf{p})}$. More precisely, by Remark 3.3.3, for all $s \in \mathbb{N}$ and for all $a \in E(R / \mathbf{p})$, there is a unique element $b \in E(R / \mathbf{p})$ such that $x_{j}{ }^{s} b=a$. Thus for all $\frac{a}{x_{j}{ }^{s}} \in E(R / \mathbf{p})_{x_{j}}, a=x_{j}{ }^{s} b$ for some $b \in E(R / \mathbf{p})$ and so

$$
g\left(\frac{a}{x_{j}{ }^{s}}\right)=g\left(\frac{x_{j}^{s} b}{x_{j}{ }^{s}}\right)=g\left(\frac{b}{1}\right)=g \iota(b)=b,
$$

i.e., $g\left(\frac{a}{x_{j}{ }^{s}}\right)=b$ where $b \in E(R / \mathbf{p})$ is such that $a=x_{j}{ }^{s} b$. On the other hand, for all $t \geqslant 2$ and $1 \leq i_{1}<i_{2}<\ldots<i_{t-1} \leq n$ with $i_{1}, i_{2}, \ldots, i_{t-1} \neq j, g$ induces an R-module homomorphism

$$
g_{i_{1}, i_{2}, \ldots, i_{t-1}}: E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t-1}} x_{j}}=\left(E(R / \mathbf{p})_{x_{j}}\right)_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t-1}}} \quad \rightarrow \quad E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t-1}}} .
$$

Consider the identity cochain map

$$
1: E(R / \mathbf{p}) \otimes \mathcal{C} \rightarrow E(R / \mathbf{p}) \otimes \mathcal{C}
$$

i.e., the commutative diagram

where $C^{t}=\bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} R_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}$. Since

$$
\begin{aligned}
E(R / \mathbf{p}) \otimes C^{t} & =E(R / \mathbf{p}) \otimes\left(\bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} R_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}\right) \\
& \cong \bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n}\left(E(R / \mathbf{p}) \otimes R_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}\right) \\
& \cong \bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} E(R / \mathbf{p})_{x_{i_{1} x_{i_{2}} \cdots x_{i_{t}}}}
\end{aligned}
$$

the diagram (1) is just the diagram

We let σ^{1} be the composition of the canonical R-module homomorphism $\bigoplus_{i=1}^{n} E(R / \mathbf{p})_{x_{i}} \rightarrow$ $E(R / \mathbf{p})_{x_{j}}$ and g, i.e., for all $\bigoplus_{i=1}^{n} \frac{a_{i}}{x_{i}{ }^{{ }_{i}}} \in \bigoplus_{i=1}^{n} E(R / \mathbf{p})_{x_{i}}, \sigma^{1}\left(\bigoplus_{i=1}^{n} \frac{a_{i}}{x_{i}{ }^{s_{i}}}\right)=g\left(\frac{a_{j}}{x_{j}{ }^{{ }^{j}}}\right)$, and let $\sigma^{n+1}: 0 \rightarrow E(R / \mathbf{p})_{x_{1} x_{2} \cdots x_{n}}$ be the zero map, and for each t with $2 \leqslant t \leqslant n$, we define the R-module homomorphism

$$
\sigma^{t}: \bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}} \rightarrow \bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t-1} \leq n} E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t-1}}}
$$

by giving on the component $E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}} \rightarrow E(R / \mathbf{p})_{x_{j_{1}} x_{j_{2}} \cdots x_{j_{t-1}}}$ to be

$$
\begin{cases}\delta\left(\left\{j_{1}, \ldots, j_{t-1}\right\},\{j\}\right) \cdot g_{i_{1}, i_{2}, \ldots, i_{t-1}} & \text { if }\left\{i_{1}, \ldots, i_{t}\right\}=\left\{j_{1}, \ldots, j_{t-1}\right\} \cup\{j\}, \\ 0 & \text { otherwise }\end{cases}
$$

Now we show that $d^{t-1} \sigma^{t}+\sigma^{t+1} d^{t}=1$ for all $t>0$. First, we show that $d^{0} \sigma^{1}+\sigma^{2} d^{1}=1$, i.e., the case of $t=1$. Note that with the notation we mention in Notation 3.3.4, we have

$$
\bigoplus_{i=1}^{n} E(R / \mathbf{p})_{x_{i}}=\sum_{i=1}^{n} E(R / \mathbf{p})_{x_{i}} e_{i}
$$

Hence, in order to show that $d^{0} \sigma^{1}+\sigma^{2} d^{1}=1$, we only need to show that for all $i=$ $1,2, \ldots, n,\left(d^{0} \sigma^{1}+\sigma^{2} d^{1}\right)\left(\alpha e_{i}\right)=\alpha e_{i}$ for all $\alpha \in E(R / \mathbf{p})_{x_{i}}$. Let $\frac{a}{x_{i}{ }^{k}} \in E(R / \mathbf{p})_{x_{i}}$. If $i \neq j$, then

$$
d^{0} \sigma^{1}\left(\frac{a}{x_{i}} e_{i}\right)=0
$$

Moreover, let $L=\{1,2, \ldots, n\} \backslash\{i\}$. Then $j \in L$ and we have

$$
\begin{aligned}
\sigma^{2} d^{1}\left(\frac{a}{x_{i}{ }^{k}} e_{i}\right) & =\sigma^{2}\left(\sum_{w \in L} \delta(\{i\},\{w\}) \frac{x_{w}{ }^{k} a}{\left(x_{i} x_{w}\right)^{k}} e_{i w}\right) \\
& =\sigma^{2}\left(\delta(\{i\},\{j\}) \frac{x_{j}{ }^{k} a}{\left(x_{j} x_{j}\right)^{k}} e_{i j}\right)+\sigma^{2}\left(\sum_{w \in L \backslash\{j\}} \delta(\{i\},\{w\}) \frac{x_{w}{ }^{k} a}{\left(x_{i} x_{w}\right)^{k}} e_{i w}\right) \\
& =\delta(\{i\},\{j\}) \sigma^{2}\left(\frac{x_{j}{ }^{k} a}{\left(x_{i} x_{j}\right)^{k}} e_{i j}\right)+0 \\
& =\delta(\{i\},\{j\}) \cdot\left(\delta(\{i\},\{j\}) \frac{a}{x_{i}{ }^{k}} e_{i}\right) \\
& =\frac{a}{x_{i} k^{k}} e_{i},
\end{aligned}
$$

where the third equality follows form the fact that $j \notin\{i, w\}$ for all $w \in L \backslash\{j\}$. Hence $\left(d^{0} \sigma^{1}+\sigma^{2} d^{1}\right)\left(\frac{a}{x_{i}{ }^{k}} e_{i}\right)=\frac{a}{x_{i}{ }^{k}} e_{i}$. If $i=j$, let $b \in E(R / \mathbf{p})$ such that $x_{j}{ }^{k} b=a$. Then

$$
d^{0} \sigma^{1}\left(\frac{a}{x_{j}{ }^{k}} e_{j}\right)=d^{0}(b)=\sum_{i=1}^{n} \frac{b}{1} e_{i}=\sum_{i=1}^{n} \frac{x_{i}{ }^{k} b}{x_{i}{ }^{k}} e_{i} .
$$

Moreover, let $X=\{1,2, \ldots, n\} \backslash\{j\}$. Then

$$
\begin{aligned}
\sigma^{2} d^{1}\left(\frac{a}{x_{j}^{k}} e_{j}\right) & =\sigma^{2}\left(\sum_{w \in X} \delta(\{j\},\{w\}) \frac{x_{w^{k}}{ }^{k}}{\left(x_{j} x_{w}\right)^{k}} e_{j w}\right) \\
& =\sum_{w \in X} \delta(\{j\},\{w\}) \sigma^{2}\left(\frac{\left.x_{w^{x} x_{j} k}^{\left(x_{j} k\right.} e_{j w}\right)}{\left(x_{j} x_{w}\right)^{k}} e_{j w}\right) \\
& =\sum_{w \in X} \delta(\{j\},\{w\}) \delta(\{w\},\{j\}) \frac{x_{w}^{k} b}{x_{w}{ }^{k}} e_{w} \\
& =\sum_{w \in X}(-1) \cdot \frac{x_{w^{k} b}}{x_{w}^{k}} e_{w} .
\end{aligned}
$$

Hence $\left(d^{0} \sigma^{1}+\sigma^{2} d^{1}\right)\left(\frac{a}{x_{j}{ }^{k}} e_{j}\right)=\frac{a}{x_{j}{ }^{k}} e_{j}$. Therefore, $d^{0} \sigma^{1}+\sigma^{2} d^{1}=1$. On the other hand, for all $\frac{a}{\left(x_{1} x_{2} \cdots x_{n}\right)^{k}} \in E(R / \mathbf{p})_{x_{1} x_{2} \cdots x_{n}}$, let $b \in E(R / \mathbf{p})$ such that $x_{j}{ }^{k} b=a$, then

$$
\begin{aligned}
\left(d^{n-1} \sigma^{n}+\sigma^{n+1} d^{n}\right)\left(\frac{a}{\left(x_{1} x_{2} \cdots x_{n}\right)^{k}} e_{1,2, \ldots, n}\right) & =d^{n-1} \sigma^{n}\left(\frac{x_{j}^{k} b}{\left(x_{1} x_{2} \cdots x_{n}\right)^{k}} e_{1,2, \ldots, n}\right) \\
& =d^{n-1}\left(\delta(X,\{j\}) \frac{b}{\left(x_{1} \cdots x_{j-1} x_{j+1} \cdots x_{n}\right)^{k}} e_{1, \ldots, j-1, j+1 \ldots, n}\right) \\
& =\delta(X,\{j\}) \cdot \delta(X,\{j\}) \frac{x_{j}{ }^{k} b}{\left(x_{1} x_{2} \cdots x_{n}\right)^{k}} e_{1,2, \ldots, n} \\
& =\frac{a}{\left(x_{1} x_{2} \cdots x_{n}\right)^{k}} e_{1,2, \ldots, n} .
\end{aligned}
$$

Hence $d^{n-1} \sigma^{n}+\sigma^{n+1} d^{n}=1$. Therefore, we have $d^{t-1} \sigma^{t}+\sigma^{t+1} d^{t}=1$ for $t=1$ and $t=n$. Next, we show that $d^{t-1} \sigma^{t}+\sigma^{t+1} d^{t}=1$ for all $2 \leq t \leq n-1$. Note that with the notation we mention in Notation 3.3.4(1), we have that

$$
\bigoplus_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n} E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}} e_{i_{1} i_{2} \ldots i_{t}} .
$$

Hence, in order to show that $d^{t-1} \sigma^{t}+\sigma^{t+1} d^{t}=1$, we only need to show that for all $1 \leq$ $i_{1}<i_{2}<\ldots<i_{t} \leq n,\left(d^{t-1} \sigma^{t}+\sigma^{t+1} d^{t}\right)\left(\alpha e_{i_{1} i_{2} \ldots i_{t}}\right)=\alpha e_{i_{1} i_{2} \ldots i_{t}}$ for all $\alpha \in E(R / \mathbf{p})_{x_{i_{1} x_{i_{2}} \cdots x_{i_{t}}}}$. We separate our discussion into two cases.

Case 1: $j \notin\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$. Let $\frac{a}{\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}\right)^{k}} \in E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}$. Since $j \notin\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$, we have

$$
d^{t-1} \sigma^{t}\left(\frac{a}{\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t}}\right)=d^{t-1}(0)=0 .
$$

Let $J=\{1,2, \ldots, n\} \backslash\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$. Then $j \in J$ and we have

$$
\begin{aligned}
& \sigma^{t+1} d^{t}\left(\frac{a}{\left(x_{i_{1}} x_{2} \cdots x_{i t}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t}}\right) \\
= & \sigma^{t+1}\left(\sum_{w \in J} \delta\left(\left\{i_{1}, i_{2}, \ldots, i_{t}\right\},\{w\}\right) \frac{x_{w}{ }^{k} a}{\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}} x_{w}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t} w}\right) \\
= & \sigma^{t+1}\left(\delta\left(\left\{i_{1}, i_{2}, \ldots, i_{t}\right\},\{j\}\right) \frac{x_{j}{ }^{k} a}{\left(x_{i_{1}} x_{i_{2} \cdots} \cdots x_{\left.i_{t} x_{j}\right)^{k}} k\right.} e_{i_{1} i_{2} \ldots i_{t} j}\right) \\
& +\sigma^{t+1}\left(\sum_{w \in J \backslash\{j\}} \delta\left(\left\{i_{1}, i_{2}, \ldots, i_{t}\right\},\{w\}\right) \frac{x_{w}{ }^{k} a}{\left(x_{i_{1} x_{i_{2}} \cdots x_{\left.i_{t} x_{w}\right)^{k}}} e_{i_{1} i_{2} \ldots i_{t} w}\right)}\right. \\
= & \delta\left(\left\{i_{1}, i_{2}, \ldots, i_{t}\right\},\{j\}\right) \sigma^{t+1}\left(\frac{x_{j}{ }^{k} a}{\left(x_{i_{1} x_{2} \cdots x_{\left.i_{t} x_{j}\right)^{k}}} e_{i_{1} i_{2} \ldots i_{t} j}\right)+0}\right. \\
= & \delta\left(\left\{i_{1}, i_{2}, \ldots, i_{t}\right\},\{j\}\right) \cdot\left(\delta\left(\left\{i_{1}, i_{2}, \ldots, i_{t}\right\},\{j\}\right) \frac{a}{\left(x_{i_{1}} x_{\left.i_{2} \cdots x_{i t}\right)^{k}}^{k}\right.} e_{i_{1} i_{2} \ldots i_{t}}\right) \\
= & \frac{a}{\left(x_{\left.i_{1} x_{i_{2} \cdots x_{i t}}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t}},\right.}
\end{aligned}
$$

where the third equality follows form the fact that $j \notin\left\{i_{1}, i_{2}, \ldots, i_{t}, w\right\}$ for all $w \in J \backslash\{j\}$.
Hence $\left(d^{t-1} \sigma^{t}+\sigma^{t+1} d^{t}\right)\left(\frac{a}{\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t}}\right)=\frac{a}{\left(x_{\left.i_{1} x_{2} \cdots x_{i_{t}}\right)^{k}}\right.} e_{i_{1} i_{2} \ldots i_{t}}$.
Case 2: $j \in\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$, i.e., $j=i_{m}$ for some $m \in\{1,2, \ldots, t\}$. We let

$$
U=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}, U_{m}=U \backslash\left\{i_{m}\right\}, V=\{1,2, \ldots, n\} \backslash U, \text { and } V_{m}=\{1,2, \ldots, n\} \backslash U_{m} .
$$

Let $\frac{a}{\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}\right)^{k}} \in E(R / \mathbf{p})_{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}$ and let $b \in E(R / \mathbf{p})$ such that $x_{j}{ }^{k} b=a$. Then

$$
\begin{aligned}
& d^{t-1} \sigma^{t}\left(\frac{a}{\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t}}\right) \\
& =d^{t-1}\left(\delta\left(U_{m},\{j\}\right) \frac{b}{\left(x_{\left.i_{1} \cdots x_{i_{m-1}} x_{i_{m+1}} \cdots x_{i_{t}}\right)^{k}}\right.} e_{i_{1} \ldots i_{m-1} i_{m+1} \cdots i_{t}}\right) \\
& =\delta\left(U_{m},\{j\}\right)\left(\sum_{w \in V_{m}} \delta\left(U_{m},\{w\}\right) \frac{x_{w}{ }^{k} b}{\left(x_{i_{1}} \cdots x_{i_{m-1}} x_{i_{m+1}} \cdots x_{i_{t}} x_{w}\right)^{k}} e_{i_{1} \ldots i_{m-1} i_{m+1} \ldots i_{t} w}\right) \\
& \left.=\delta\left(U_{m},\{j\}\right) \cdot \delta\left(U_{m},\{j\}\right) \frac{x_{j}{ }^{k} b}{\left(x_{i_{1}} \cdots x_{i_{m-1}} x_{i_{m+1}} \cdots x_{i t} x_{j}\right)^{k}} e_{i_{1} \ldots i_{m-1} i_{m+1} \cdots i_{t} j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a}{\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t}}+\sum_{w \in V} \delta\left(U_{m},\{j\}\right) \delta\left(U_{m},\{w\}\right) \frac{x_{w^{k}}{ }^{k} b}{\left(x_{\left.i_{1} \cdots x_{i_{m-1}} x_{i_{m+1}} \cdots x_{i_{t}} x_{w}\right)^{k}}\right.} e_{i_{1} \ldots i_{m-1} i_{m+1} \cdots i_{t} w}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sigma^{t+1} d^{t}\left(\frac{a}{\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t}}\right) \\
& =\sigma^{t+1}\left(\sum_{w \in V} \delta(U,\{w\}) \frac{x_{w}{ }^{k} a}{\left(x_{i_{1} x_{2}} \cdots x_{i t} x_{w}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t} w}\right) \\
& =\quad \sum_{w \in V} \delta(U,\{w\}) \sigma^{t+1}\left(\frac{x_{w}{ }^{k} x_{j}{ }^{k} b}{\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}} x_{w}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t w}}\right) \\
& =\quad \sum_{w \in V} \delta(U,\{w\}) \cdot \delta\left(U_{m} \cup\{w\},\{j\}\right) \frac{x_{w^{k}} b}{\left(x_{\left.i_{1} \cdots x_{i_{m-1}} x_{i_{m+1}} \cdots x_{i} x_{w}\right)^{k}} e_{i_{1} \ldots i_{m-1} i_{m+1} \cdots i_{t} w} .\right.}
\end{aligned}
$$

Note that for all $w \in V$, we have

$$
\begin{aligned}
& \delta(U,\{w\}) \cdot \delta\left(U_{m} \cup\{w\},\{j\}\right) \\
= & \left(\delta\left(U_{m},\{w\}\right) \delta(\{j\},\{w\})\right) \cdot\left(\delta\left(U_{m},\{j\}\right) \delta(\{w\},\{j\})\right) \\
= & \delta\left(U_{m},\{w\}\right) \delta\left(U_{m},\{j\}\right) \delta(\{j\},\{w\}) \delta(\{w\},\{j\}) \\
= & (-1) \cdot \delta\left(U_{m},\{w\}\right) \delta\left(U_{m},\{j\}\right) .
\end{aligned}
$$

Hence $\left(d^{t-1} \sigma^{t}+\sigma^{t+1} d^{t}\right)\left(\frac{a}{\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}\right)^{k}} e_{i_{1} i_{2} \ldots i_{t}}\right)=\frac{a}{\left(x_{\left.i_{1} x_{i_{2}} \cdots x_{i_{t}}\right)^{k}}\right.} e_{i_{1} i_{2} \ldots i_{t}}$.
Thus $d^{t-1} \sigma^{t}+\sigma^{t+1} d^{t}=1$ for all $t>0$. Hence by Definition 3.1.1 (1), the cochain map

is null homotopic. Hence by Remark 3.1.2, the induced map 1* : $H^{t}(E(R / \mathbf{p}) \otimes \mathcal{C}) \rightarrow$ $H^{t}(E(R / \mathbf{p}) \otimes \mathcal{C})$ is the zero map for all $t>0$. Therefore $H^{t}(E(R / \mathbf{p}) \otimes \mathcal{C})=0$ for all $t>0$, and this completes the proof.

Theorem 3.3.6. Let $x_{1}, x_{2}, \cdots, x_{n} \in R$ such that the ideal $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is \mathbf{m} primary and let \mathcal{C} be the Chech complex with respect to the sequence $x_{1}, x_{2}, \ldots, x_{n}$. Then $H_{\mathbf{m}}^{t}(A) \cong H^{t}(A \otimes \mathcal{C})$, for all R-modules A and $t \geq 0$.

Proof. By Theorem 3.1.10, $\left\{H_{\mathbf{m}}^{t}(-), E^{t}\right\}_{t \geq 0}$ is a universal connected sequence with initial $H_{\mathbf{m}}^{0}(-)=\Gamma_{\mathbf{m}}(-)$. By Theorem 3.3.5, $\left\{H^{t}(-\otimes \mathcal{C}), E^{t}\right\}_{t \geq 0}$ is also a universal connected sequence. Moreover, from Lemma 3.2.12, we have that $H^{0}(-\otimes \mathcal{C})=\Gamma_{\mathbf{m}}(-)$. Therefore, by Lemma 2.3.5, $H_{\mathbf{m}}^{t}(A) \cong H^{t}(A \otimes \mathcal{C})$ for all R-modules A and $t \geq 0$.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison Wesley, 1969.
[2] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1998.
[3] D. Katz, Lecture Notes on Homological Algebra, University of Kansas.
[4] S. MacLane, Homology, Springer, Berlin, 1963.

