
國立臺灣師範大學科技與工程學院電機工程學系

碩士論文

Department of Electrical Engineering

College of Technology and Engineering

National Taiwan Normal University

Master’s Thesis

基於深度強化學習之移動大型重物

Moving Large Size and Heavy Object with

Deep Reinforcement Learning

許哲菡

Hanjaya Mandala

指導教授: 包傑奇 教授

Advisor: Prof. Jacky Baltes

中華民國 109年 6月

June 2020

i

Acknowledgment

This work was financially supported by the ‘Chinese Language and Technology

Center’ of National Taiwan Normal University (NTNU) from The Featured Areas

Research Center Program within the framework of the Higher Education Sprout Project

by the Ministry of Education (MOE) in Taiwan, and Ministry of Science and

Technology, Taiwan, under Grant Nos. MOST 108-2634-F-003-002, MOST 108-2634-

F-003-003, and MOST 108-2634-F-003-004 (administered through Pervasive Artificial

Intelligence Research (PAIR) Labs) as well as MOST 107-2811-E-003-503. We are

grateful to the National Center for High-performance Computing for computer time and

facilities to conduct this research.

ii

Moving Large Size and Heavy Object with

Deep Reinforcement Learning

Student: Hanjaya Mandala Advisor: Prof. Jacky Baltes

Department of Electrical Engineering

National Taiwan Normal University

ABSTRACT

Humanoid robots are designed and expected to work alongside a human. In our

daily life, Moving Large Size and Heavy Objects (MLHO) can be considered as a

problem that is a common activity and dangerous to humans. In this thesis, we propose

a novel hierarchical learning-based algorithm, which we use dragging to transport an

object on an adult-sized humanoid robot. The proposed method proves robustness on a

THORMANG-Wolf adult-sized humanoid robot, that manages to drag a massive object

with a mass of double of its weight (84.6 kg) for 2 meters. Therefore, the algorithms

consist of three hierarchical deep learning-based algorithms to solve the MLHO problem

and distributed in terms of robot vision and behavior control. Based on this insight, in

the robot vision control, first, we propose deep learning algorithms to 3D object

classification and surface detection.

For 3D object classification, we propose a Three-layers Convolution Volumetric

Network (TCVN). Input data of the TCVN model used a voxel grid representation from

point clouds data acquired from the robot’s LiDAR scanner. On the other hand, for

surface detection, we propose a lightweight real-time instance segmentation called Tiny-

YOLACT (You Only Look at Coefficients) to segment the floor from the robot’s camera.

Tiny-YOLACT model is adopted from the YOLACT model and utilized ResNet-18

iii

model as the backbone network. Furthermore, for robot behavior control, as the main

part of this thesis we address solving MLHO problem by an adult-sized humanoid robot

using the deep reinforcement learning algorithm for the first time. At this part, we

proposed a Deep Q-Learning algorithm to train a deep model for control policy in

offsetting the Centre of Body (CoB) of the robot when dragging different objects named

(DQL-COB). For this purpose, the offset CoB is implemented to keep tracking with the

robot’s center of mass. As a result, the robot can keep balance with maintaining the ZMP

in the support polygon. DQL-COB algorithm was first trained on the ROS Gazebo

simulator to avoid costly experiments in terms of time and real environment constraints,

then it was adopted with a real robot on three different types of surfaces.

To evaluate the stability of the THORMANG-Wolf robot with the proposed

methods, we evaluated two types of experiments on three types of surfaces with eight

different objects. In these experiments, in one scenario we use IMU along with foot

Pressure (F/T) sensor, in the second scenario we just use IMU data as learning algorithm

input. In the experiments, the success rates of applying the DQL-COB algorithm on the

real robot are 92.91% with using the F/T sensor and 83.75% without using F/T sensors.

Moreover, the TCVN model on 3D object classifications achieved a 90% accuracy in

real-time. Correspondingly, the Tiny-YOLACT model achieved a 34.16 mAP on

validation data with an average of 29.56 fps on a single NVIDIA GTX-1060 GPU.

Keywords: humanoid robot, deep reinforcement learning, dragging object, deep learning.

iv

Table of Contents

Acknowledgment ... i

ABSTRACT ... ii

Table of Contents... iv

List of Figures .. vi

List of Tables ... viii

Chapter 1: Introduction .. 1

1.1. Background .. 1

1.2. Problem statement .. 2

1.3. The objective of the study .. 4

1.4. Limitation of the study ... 5

Chapter 2: Literature Review .. 6

2.1. Related work .. 6

2.1.1. Pushing object ... 6

2.1.2. Pivoting object .. 8

2.1.3. Teleoperation manipulation .. 9

2.1.4. Walking Balance (Learning-Based) .. 9

2.1.5. Push Recovery (Learning-Based) ... 10

2.1.6. Summary of related work .. 11

2.2. Inverse Kinematic .. 12

2.3. Walking Gait .. 14

2.4. Neural Network .. 16

2.5. Deep Learning .. 17

2.6. Object Detection .. 19

2.7. Reinforcement Learning .. 20

2.8. Deep Reinforcement Learning ... 22

Chapter 3: Methodology .. 23

3.1. THORMANG-Wolf Robot .. 23

3.1.1. Hardware Description ... 23

3.1.2. Software Description ... 26

v

3.1.3. The Proposed Algorithm Design ... 27

3.2. Robot Vision Process ... 30

3.2.1. 3D Object Detection (Deep Learning) .. 30

3.2.2. Floor Detection (Deep Learning) .. 35

3.3. Robot Motion Control .. 38

3.3.1. Object Grasping .. 38

3.3.2. Walking Control .. 39

3.4. Robot Behavior Control ... 42

3.4.1. DQL-COB Algorithm Design ... 43

Chapter 4: Experimental Result ... 54

4.1. Experimental Setup .. 55

4.2. Experimental Result for Robot Vision ... 57

4.2.1. 3D Object Classification Result .. 57

4.2.2. Floor Detection Result .. 59

4.3. Experimental Results for Robot Behavior ... 62

4.3.1. DQL-COB Training Results ... 62

4.3.2. DQL-COB Empirical Evaluation Result ... 66

Chapter 5: Closing ... 73

5.1. Conclusion ... 73

5.2. Future Work ... 74

Bibliographies .. 75

Autobiography ... 79

Academic Achievement ... 80

vi

List of Figures

Figure 1-1 Comparison motion pose on the moving object. ... 3

Figure 2-1 Example of inverse kinematic on the left leg of a biped robot; 12

Figure 2-2 Tree structure of the humanoid links connection [3]. 14

Figure 2-3 Sagittal plane view of walking gait cycle [38]. ... 15

Figure 2-4 ZMP support polygon [3]. ... 15

Figure 2-5 Projection of the Centre of Mass on Zero Moment Point. 16

Figure 2-6 Neural network architecture. ... 16

Figure 2-7 Operations done by neurons on a single layer perceptron. 17

Figure 2-8 Deeper network architecture of ANN or called Deep Learning. 18

Figure 2-9 Convolutional Neural Network subclass of deep learning. 18

Figure 2-10 Various types of 2D image object detection. ... 19

Figure 2-11 Types of 3D point cloud object detection by [47]. 20

Figure 2-12 Markov Decision Process of Reinforcement Learning.............................. 20

Figure 2-13 Deep Q-Network architecture [50]. ... 22

Figure 3-1 THORMANG3 adult-sized humanoid robot. .. 24

Figure 3-2 THORMANG-Wolf hardware architecture. .. 25

Figure 3-3 THORMANG-Wolf electrical components system. 26

Figure 3-4 ROS graph architecture performing a dragging task. 27

Figure 3-5 THORMANG-Wolf hierarchical framework data flow diagram. 28

Figure 3-6 Block diagram of the proposed DL algorithms to solve MLHO problem. . 29

Figure 3-7 Flowchart DL algorithm of 3D object classification. 31

Figure 3-8 Example process of preprocessing 3D point cloud data. 33

Figure 3-9 The network architecture of the TCVN model. ... 34

Figure 3-10 Types of floors used in this experiment. .. 35

Figure 3-11 YOLACT network architecture [46]. .. 36

Figure 3-12 Building block (residual function) of ResNet [56]. 37

Figure 3-13 Sample pre-recorded motion for grasping different types of objects. 38

Figure 3-14 Cart-table model .. 40

Figure 3-15 Walking pattern generation based on preview control 40

vii

Figure 3-16 Walking gait pattern generation process. .. 41

Figure 3-17 Integration walking module with the DQL-COB algorithm. 42

Figure 3-18 IMU sensor as a state of the environment. .. 44

Figure 3-19 Torque vector on both feet. .. 44

Figure 3-20 Action offset on COB X. ... 46

Figure 3-21 Reward based on robot pitch state and finished distance. 47

Figure 3-22 Hierarchical Q-Network architecture. ... 49

Figure 3-23 Experience replay illustration on training data. ... 50

Figure 3-24 Solution to non-stationary target DQN. ... 51

Figure 3-25 Block diagram of Deep Q-Network on ROS Gazebo simulator. 52

Figure 4-1 The 4 types of the 3D object after voxel grid filter. 57

Figure 4-2 The comparison of TCVN model performances during training. 58

Figure 4-3 The comparison of the TCVN model in a confusion matrix of the validation

data. .. 59

Figure 4-4 Example results of floor detection using the Tiny-YOLACT model. 60

Figure 4-5 Result of validation mAP and FPS using different ResNet backbone. 61

Figure 4-6 Snapshot of dragging in the Gazebo simulator. ... 62

Figure 4-7 Comparison of accumulated reward during training. 63

Figure 4-8 Comparison of Euclidean error during training. .. 63

Figure 4-9 Snapshot during training in the Gazebo simulator. 64

Figure 4-10 Recorded (states, actions) pair by the learned DQN during testing. 65

Figure 4-11 Snapshots testing on plywood surfaces. .. 66

Figure 4-12 Snapshots testing on green carpet surfaces. ... 67

Figure 4-13 Snapshots testing on tile surfaces. ... 67

Figure 4-14 The success rate of dragging all objects per each surface. 69

Figure 4-15 Recorded (states, actions) pair without using the F/T sensor. 69

Figure 4-16 Recorded (states, actions) pair using the F/T sensor. 71

Figure 4-17 Example of a failure condition in dragging an empty small suitcase. 71

Figure 4-18 Example of a failure condition in dragging a big suitcase with a human.. 72

Figure 4-19 The pre-defined CoB-X to dragging a big suitcase with a human. 72

viii

List of Tables

Table 3-1 THORMANG-Wolf Specification Details. .. 25

Table 3-2 The network details of the TCVN model. ... 34

Table 3-3 The adopted ResNet architecture and number of parameters [56]. 37

Table 3-4 Details of the Q-Network architecture. ... 49

Table 4-1 Experimental surfaces. .. 55

Table 4-2 Experimental objects. .. 55

Table 4-3 Foot-steps parameter. .. 56

Table 4-4 Deep-learning computer hardware specifications. .. 56

Table 4-5 OPC (laptop) hardware specifications. ... 56

Table 4-6 List of hyperparameters and values of the DQN .. 63

Table 4-7 Summary and comparison of the success rate result for all experiments. 68

1

Chapter 1: Introduction

1.1. Background

Humanoid robots have become important types of robots that researchers develop

and improve them rapidly. In [1], a description of the possible application using a

humanoid robot in real-life is provided. In [2], the authors review over last decade's

application and influence of humanoid robots in the social, healthcare, and education

domains. Recently, in (2019), the humanoid robot applications in a real-world scenario

were chosen as the special topic issues in IEEE Robotics and Automation Magazine

(RAM)1. Therefore, the development of humanoid robots offers significant potential in

alleviating tedious and tough tasks that currently performed by humans.

The important question with developing a humanoid robot is “Why humanoid

robot? Why not the other types of robots?”. The answer can be indicated as the functions

of the humanoid robots itself. Three main fundamental functions of a humanoid robot

are evaluated on [3]: (i) Humanoid robots are able to work in the human environment,

(ii) Humanoid robots are capable to use humans tools, (iii) Humanoid robots are

designed structurally similar to a human shape. As mentioned, a humanoid robot is

designed to be similar to mankind. It should mimic a human from different aspects such

as interaction, perception, locomotion, manipulation, and behavior.

Generally, humanoid robots were expected to work alongside humans, or as an

alternative to humans in any circumstances. For example, in heavy-duty work such as

civil engineering and hazardous environments construction, Moving Large and Heavy

Objects (MLHO) is required. Moreover, in rescue applications, during the evacuation

process, it is necessary to remove the large size of debris. Though biped humanoid

robots have high mobility like humans, walking with moving objects has a possibility

robot may fall, due to relatively disturbance in the Centre of Mass (COM) with suffering

1 https://www.ieee-ras.org/publications/ram/special-issues/humanoid-robot-applications-in-real-world-scenarios

2

serious damage. So far, many humanoid robot development projects with a focus on the

MLHO was still a challenging problem [4-12]. These challenges can be summarized

into how to develop a stable walking gait on a biped robot while the robot is dragging a

large size object. Admittedly, the dragging problem is more challenging than carrying

because there are more uncertainties of surface friction which duplicates the complexity

of the problem.

1.2. Problem statement

Biped walking humanoid robots may not be stable due to different real-time

environment conditions even the desired walking pattern has planned to realize stable

walking on the flat floor. However, in the MLHO problem, it is assumed that some

objects are too heavy to lift or its shape or size is very hard to carry for a humanoid robot

with limited joint torque. Therefore, to deal with this problem, we considered the

humanoid robot to pull the object. For this reason, we used the pull motion and then

specifically called dragging. This is significant although drag and pulls motion have a

similar meaning, however, term dragging is more specific than pull.

The important question in this MLHO motion type, “Why we choose dragging

the object rather than pushing the object?”. The answer is illustrated in Figure 1-1,

MLHO with dragging motion has more benefit than pushing an object, which is the main

target in this thesis is based on that. A study about comparison force on the push and

pull an object in flat horizontal surface provided by [13, 14].

Based on Figure 1-1, it shows that there is a difference in friction and forces

toward the object between those two tasks. The push motion as shown in Figure 1-1(a),

shows the vertical component of the pushing force acts on the object in the vertically

downward direction. Therefore, it increases the effective weight of the object and it’s

mathematically written in Eq (1-1). Whereas, it also affects the friction force between

object and ground. The effective weight W of the object on pushing motion as follow:

3

 sinW m g F = + (1-1)

Where m is a mass of the object, g is the gravity, F is the pushing force, and

is elevation angle of the force given to the object.

On the other hand, the pulling motion shows the reverse way of the vertical force

component acts on the object is in a vertically upward direction. Thus, it reduces the

effective weight of the object proof on Eq (1-2) and it also decreases friction between

the object and the ground. The effective weight W of the object on pulling motion as

follow:

 sinW m g F = − (1-2)

Based on these two equations, dragging an object on the horizontal plane is easier than

pushing. Note that, although pushing the object can be beneficial in different conditions

for a humanoid robot, but it is not the objective in this research study.

 (a) Pushing object. (b) Dragging object.

Figure 1-1 Comparison motion pose on the moving object.

4

1.3. The objective of the study

In this work, we present an adult-sized bipedal humanoid robot that is capable of

moving a large and heavy object. The objectives of this project are divided into two

parts. First, proposing a robot vision algorithm on 3D object detection and 2D object

instance segmentation, that uses a deep-learning algorithm approached. Furthermore, in

3D object detection, the object will be acquired using a real-time LiDAR scanner on the

robot's head to get the 3D data. On the other hand, the 2D instance segmentation will be

expected running in real-time and used for floor detection from the robot’s webcam.

Second, proposing a deep reinforcement learning algorithm specifically on the Deep Q-

Learning algorithm to improve the robot’s behavior on whole-body manipulation to

transporting large size and heavy objects. Therefore, in the training process, we used a

simulated robot model and environment on Gazebo2. The advantage of using a gazebo

simulator that it can simulate very close to the real environment. As a result, the training

resulted can be directly applied to the real robot without any parameter adjustment. This

thesis discusses a way of MLHO by a bipedal adult-sized humanoid robot, in which the

robot drags different objects including a massive object on various flat surfaces, and

walks in a backward direction.

The rest of the thesis is organized as follows. In chapter 2 an overview of the

literature review on moving objects using bipedal humanoid robots presented. Chapter

3 explains the methodology of the algorithms to solve MLHO problem, in which the

architecture of THORMANG-Wolf robot, vision on the proposed deep learning 3D

object classification and floor detection, the bipedal humanoid robot walking control,

and the proposed deep reinforcement learning method are presented. Chapter 4 provides

the experimental result of the 3D object classification and the proposed method of Deep

Q-Network (DQN) on the THORMANG-Wolf robot. Finally, chapter 5 concludes the

thesis and shows future work.

2 http://gazebosim.org/

5

1.4. Limitation of the study

There are four major limitations in this research that could be addressed in future

research. First, the research focused on robot vision processing that is based on a deep

learning approach. Also, it divided into 3D voxel object classification from LiDAR point

cloud data and real-time instances segmentation for floor detection. The second

limitation concern of robot manipulation control, it only used static grasp motion for

grasping the object. Third, on the robot walking control, it used the original ZMP

walking controller provided from ROBOTIS on the THORMANG3 robot. Finally, in

robot behavior control, it specifically uses the deep reinforcement learning on the DQN

algorithm to learn the control policy of the Centre of Body (CoB) parameter.

6

Chapter 2: Literature Review

2.1. Related work

Balancing in Bipedal Humanoid Robot (BHR) systems is a challenging research

problem and has been used to address a variety of issues. Hence, there are many the

state-of-the-art stabilize walking in biped robot has been extensively studied [15], but

walking with disturbance such as pushing [4-8], carrying [9, 10], or lifting [10-12] large

or heavy objects are still an open problem. Therefore, maintain the balance of humanoid

robots when transporting objects can be one of the critical problems to be investigated

by adult-sized BHR. The following literature review confirms that MLHO presents a

problem that goes beyond mere balancing, discusses specific and produced solutions,

and concludes that specific approaches and robust initiatives are required for real

widespread implementation of BHR in the real world.

In the rest of this section, the literature reviews of related works on the MLHO

problems are discussed in several sub-section. As a rule, each sub-section is a group of

related work in a more specific field and described briefly as follows. (i) Pushing the

object, the most common method for transporting large objects. (ii) Pivoting object, an

alternative motion for precise movement on moving large objects. (iii) Teleoperation

manipulation, manual control of the whole-body humanoid robot to move large-size

objects. Then, the humanoid robot control using a learning-based approached on (iv)

walking control and (v) push recovery control.

2.1.1. Pushing object

In [4], the authors studied pushing a heavy object by humanoid robot considering

the reflect force acted in the end-effectors (both hands). The reaction reflects force

aimed at the single support phase of walking. They proposed Dynamically

Complemental Zero Moment Point (DCZMP) considering the dynamical modification

position of the COM. The COM trajectory of the HRP-2 humanoid robot is modified

7

based on the forces acting on the robot's hands. These findings were replicated by [16],

in which the authors proposed GZMP (Generalized Zero-Moment Point) that enables

stability when the robot hands are in contact with objects. They use contact force without

grasping to take advantage of keeping robot balance during a disturbance. The author

used an HRP-2 humanoid robot in a simulation environment to push an object and

proposed GZMP which enables stability when the robot hands are in contact with objects.

However, these solutions were tested on large object but not with heavy weight.

In [7], the authors utilized dual-arm force control on a humanoid robot to push a

heavy wheelchair. They used a zero-moment-point (ZMP) offset approached, to

maintain the balance of the robot. This rectification allows the humanoid robot to

dynamically stabilize against the reaction forces. In this method, a real HRP-2 humanoid

robot able to push a wheelchair with weight up to 90kg without slipping. Therefore, the

importance of friction forces was captured by an expensive force sensor on the robot

arms. However, their maintenance is difficult and not all humanoid robot has a force

sensor on the arms. Moreover, force contact of a robot can be achieved from the

measurement of joint torque without using an additional force sensor. Similarly, by [9],

the authors investigated whole-body pushing motion by humanoid robot considering

force and balance on different contact points. They used a humanoid robot for pushing

heavy objects on the sensor-less region; using both hands, forearm, or the hip. In this

research, authors manually generate the posture of a robot try to push unknown mass

and COG of the object. A stable pushing force equation from the feet force sensor and

external force was utilized for the closed-loop feedback. In this way, the HRP-2

humanoid robot able to push a non-wheeled heavy object. They achieved the highest

force from the robot by pushing backward with hip contact. However, the large external

reaction force (slip) which was caused by the transported object was not discussed in

this study.

 In [17], the authors provided a solution for the large reaction of external forces

(slip) generated on the feet and hands-on pushing a heavy object. In this study, an

optimizer named quadratic programming (QP) was utilized to optimize the joint torques

8

for predicting the maximum value of external force. Furthermore, this research

determined the problem as a free-floating model humanoid robot simulated using the

OpenHRP simulator. They used virtual mass (VM) as an alternative for the high

computational cost to calculate inequality friction constraint. VM was attached to the

end of limbs to estimate contact force between the free-floating model robot and object.

Anyway, this work presented in the simulation environment wherein a practical scenario,

a QP solver cannot directly deal with the joint torque limitation, because the design

variable here is the joint acceleration. In [18], the authors evaluated torque-based

balancing to perform a high-force interaction task. Instead of controlling the COM, the

proposed controller straight acquires information from the gravity-inertial wrench cone

(GIWC) to ensures the practicability of the balancing forces. They tested on TORO

humanoid robot with force up to 250N (≈ 1/3 of the robot’s weight) able to push the

table weighing 50 kg. However, one limitation with this approached that not all

humanoid robots support torque control.

2.1.2. Pivoting object

 Most previous studies on pushing manipulation show the range of pushing force

is wide in hands pushing because the robot is easy to change COG for many joints

between contact points and feet. Also, pushing the heavy and large objects in a plane

requires generating large force to compensate for the ground-object friction force. This

is a challenge because reaction forces from a heavy object can easily cause foot slippage

or lose balance and fall. For this reason, pushing large and heavy objects may not

perform well on some problems. In [19, 20], the authors validated pivoting motion as an

alternative motion for pushing a large object. The robot performed whole-body

manipulation of a large object by forward pivoting. Thus, this research maintains the

whole-body balance using resolved momentum control (RMC) [6]. RMC was adopted

for stepping motion keeping both hands in contact with the object. They tested the result

on pivoting heavy objects in both simulation and real robot HRP-2 with displacement in

x-direction was around 0.06[m]. The proposed motion had a good performance where

there is no slipping occurs during transporting objects. However, pivoting motion took

9

more time to accomplished moving objects with some distances, as it slowly moves an

object through a sequence of pivoting motion to the right and left.

2.1.3. Teleoperation manipulation

 Manipulation poses on transportation large and heavy objects, generally were

generated manually by human assistance [8]; this finding shows the time completion to

finds the perfect configuration is time-consuming. In [21], the authors solve this problem

by using teleoperation control for controlling the HRP-2 humanoid robot through a

joystick. Meanwhile, the self-balance of the robot learned from the dynamic friction

model of the manipulated objects. They showed the robot able to turn, rotate, and push

a table with a caster. Anyway, this research required to identified dynamic friction

models [22] on every initial interaction with the new load, where solving dynamic

friction modeling on a variety object is still a difficult task [23, 24].

On the other hand, another solution proposed by walking imitation of humanoid

robot toward human walking recognition provided by [25]. The motion capture system

was acquired by using 16 inertial measurement unit (IMU) sensors, placed on the

human`s head, torso, and each limb. They achieved motion recognition successfully

imitated by the humanoid robot on stance and movement direction with a time delay of

2.5 sec which is very slow. Based on this literature, considering stream a single IMU

sensor requires a high-frequency process, it can be concluded that multi IMUs based

approaches require a high computational cost for acquiring real-time data. In this regard,

both of these approached did not take advantage of any learning algorithm.

2.1.4. Walking Balance (Learning-Based)

Machine learning (ML) algorithm push the technology nowadays by presenting

an artificial intelligence of computer performs a specific task without using explicit

instructions. On the humanoid robots, the Reinforcement Learning algorithm

empowered robot intelligence through reward and punishment from a set of actions

taken by the robot. The result was tremendously changed most current research towards

this approach. In general, there was no learning-based algorithm has reported for adult-

10

sized humanoid robots to perform transportation on a large object. So then, the problem

of maintaining stability during walking and stance against disturbance, with the problem

of transporting large and heavy objects on the humanoid robot are equal. In the following

literature, prior work related to RL-based application on BHR that related to this paper

will be described respectively.

In [26], the authors designed an RL walking balancing policy, which learns the

ankle joint position of the stance leg and determines the swing foot placement during

walking. In [27], the authors used Q-Learning to control dynamic walking gait balance

and acceleration of biped robot without prior knowledge of the environment. In [28], the

authors proposed posture self-stabilizer of a biped robot under exerts amplitude-limited

random disturbances using a hierarchical stabilizer based on RL. In [29], the authors

aimed a posture-based imitation with balance learning, to allow humanoid robots to

imitate demonstrated motions using Q-Learning for the balance learning algorithm. In

[30], the authors realized the Deep Deterministic Policy Gradient (DDPG)-based deep

reinforcement learning to control the fall over of biped robot to walk steadily on the

slope. In [31], the authors utilized a Q-learning algorithm to obtain a straightforward

gait pattern to train a humanoid robot to walk straight, where the turning direction is

viewed as a gait parameter.

2.1.5. Push Recovery (Learning-Based)

The main objective of the MLHO problem is how to develop a balance system

on a BHR. Therefore, likewise to a push recovery, which is also one of an essential

method of maintaining the BHR stability. In general, the model-free RL method has an

advantage on there is no predefined model given to the robot. The robot learns the

optimum policy behavior based on the cumulative reward by trial-error. In the rest of

this section, the RL applications in push recovery control problems on BHR will be

reviewed to show similarity stability performing transporting large objects problem.

Both of the problems should stand against perturbations from external and friction forces.

11

In [32], the authors applied the RL algorithm on a humanoid robot to learn arms

rotation for adapting perturbation in push recovery. They used the off-line Q learning

process to solve a computationally expensive problem and applied online execution on

the robot. In [33], the authors solve the issue of requirement big data for learning-based

approaches that are severely restricted to a physical humanoid robot. They implemented

an online RL system on a full-body push recovery controller performing omnidirectional

walking. In [34], the authors presented the Dynamical Movement Primitives (DMP)

based push recovery for biped humanoid robot, where DMP learned bio-inspired push

recovery strategies, such as hip-ankle strategy and step strategy. In [35], the authors

developed a full-body push recovery system using Neural-Fuzzy (NF) controller on a

general humanoid robot without specialized sensors and actuators. This method uses RL

to update the parameter of the NF controller. In [36], the authors employ the Deep Q-

Network (DQN) algorithm for high-level push recovery control in small-size humanoid

robots, where the reward formula is based on an equation that analyzes the Linear

Inverted Pendulum Model (LIPM) from the energy point of view.

2.1.6. Summary of related work

As far as we know to the best of our knowledge, overall moving large objects

was done mostly using the adult-sized HRP-2 humanoid robot platform [4, 7-9, 16, 17,

19-22]. However, there’s one approach employed the TORO humanoid robot [18].

Therefore, the most common approach to transporting large and heavy objects was done

using the pushing motion. Based on this literature, no approaches were exploiting a

learning-based algorithm on whole-body large object transportation using adult-sized

BHR. Above all, the RL algorithms are applied to a humanoid robot had shown promise

on stabilizing walking and stance posture (push-recovery) due to perturbation given.

Reflecting that benefit, in this paper, we introduce the transporting large object on adult-

sized BHR problems and propose an RL algorithm to deal with it. In this regard, the

robot uses dragging motion to drag heavy and large as a novel solution for pushing

problem.

12

2.2. Inverse Kinematic

Inverse Kinematics (IK) calculate corresponding joint angles of a specific link

like foot or hand of the robot from a given position and orientation of the cartesian end

effector [3]. An example of the IK problem is shown in Figure 2-1. The important

question to solve the configuration is shown in Figure 2-1(b). Given a set of joint angles

at the left foot is raised by 0.2 m and turned the pitch by 10 deg.

(a) Initial joint configurations.

(b) The left foot is moved up by 0.2m and

rotated 10deg in pitch.
Figure 2-1 Example of inverse kinematic on the left leg of a biped robot;

A humanoid robot is a mechanism consisting of many links connected by joints.

Therefore, the theory to analyze the relationship between the position and orientation of

each link is called coordinate transformations and rotations. The basic rotation is the

rotation around x , y and z axes, which will call Roll, Pitch, and Yaw respectively.

A rotation point to Roll, Pitch, and Yaw an object from a given angle has to

follow the following rotation matrix:

1 0 0 0

0 cos sin 0
()

0 sin cos 0

0 0 0 1

xR

−
 =

 (2-1)

13

cos 0 sin 0

0 1 0 0
()

sin 0 cos 0

0 0 0 1

yR

 =
 −

 (2-2)

cos sin 0 0

sin cos 0 0
()

0 0 1 0

0 0 0 1

zR

−

 =

 (2-3)

Roll, Pitch and then Yaw a point p around the origin, it will move the point,

 ' () () ()z y xp R R R p = (2-4)

A translation by , ,a b c in the ,x y and z directions respectively has the

transformation matrix:

 (, ,)

1 0 0

0 1 0

0 0 1

0 0 0 1

x y z

a

b
Trans

c

 =

 (2-5)

If we translate point (, , ,1)Tp x y z= , the translated new coordinate became:

(, ,)' a b cp Trans p= (2-6)

In general, solving IK solutions exist on both the analytical method and the

numerical method. Therefore, the position and orientation of set of links with joint

angles are defined by nonlinear equations. Since the joint of most humanoid robots are

rotational types, the nonlinear problem is unlikely to be solved by nonlinear equations

with bunch of variables on the analytical method. However, the derivatives relationship

between the position and rotation of a link and joint angles can be represented by linear

14

equations, and the solution of the IK problem can be solved by finding linear equations

through the numerical method.

Figure 2-2 Tree structure of the humanoid links connection [3].

The humanoid robot’s kinematic structure as shown in Figure 2-2 were formed a

tree structure from joining of the links. This is also called the kinematic chain rule of

the robot model. Nowadays, the most common way to acquires the IK solution from a

kinematic chain is based on the numerical approach. Therefore, one of the famous IK

solvers uses Jacobian Pseudo Inverse (JPI) (numerical method) that is available open-

source and called Orocos Kinematic Dynamic Library (KDL) [37]. This approach could

give an IK solution based on the kinematic chain rule that user-provided.

2.3. Walking Gait

Humanoid biped robot walking gait cycles consists of two phases. These phases

are divided into Single Support Phase (SSP) and Double Support Phase (DSP). SSP

means that the phase is defined when only one leg touches the ground. In SSP, the leg

that touches ground called support foot and the leg that not touches the ground called

swing foot. On other hands, DSP is defined when both of leg touches the ground. The

sequences of walking are illustrated in Figure 2-3, starting by the SSP phase followed

by the DSP phase and continuously [38].

BODY

R ARM L ARM R LEG L LEG

R HAND L HAND R FOOT L FOOT

parent

child 1

child 2

child 1

child 2

child 1

child 2

child 1

child 2

15

Figure 2-3 Sagittal plane view of walking gait cycle [38].

A humanoid robot is structurally the same as humans, but controlling walk on the

robot is not as rigid as it looks. A humanoid robot needs to maintain its balance contact

between the foot and ground while walking. For this purpose, Zero Moment Point (ZMP)

is the most famous biped humanoid walking control [39]. ZMP is the reference point of

the robot's combined force of gravity and ground inertial force. During the walking of

the robot, if its ZMP is regularly located in the support polygon area, the robot will never

fall.

 (a) Full contact on both feet.

(b) Partial contact.

Figure 2-4 ZMP support polygon [3].

Figure 2-4 illustrated the region formed by enclosing all the contact points

between the robot and the ground by using an elastic cord braid is called support polygon.

The projection of ground with Centre of Mass (CoM) can be displayed outside of the

support polygon. However, ZMP always exists inside of the polygon support. Therefore,

humanoid robots can keep balance if the ground projection of CoM is located inside of

the support polygon as shown in see Figure 2-5.

16

Figure 2-5 Projection of the Centre of Mass on Zero Moment Point.

2.4. Neural Network

Artificial intelligence (AI) has become the most famous technique in robotics

applications. One of the most powerful and widely used in AI algorithms is the Neural

Network (NN). The main reason behind it, because NN presents an intelligence

demonstrated by a machine that works similarly to the human brain. Briefly, the

architecture of NN is consists of an interconnected number of nodes called neurons, that

are organized in layers to process the data information.

Figure 2-6 Neural network architecture.

Figure 2-6 represents a NN architecture looks like. When we zoom in to one of

the hidden or output nodes, each node is called perceptron that illustrated in Figure 2-7.

ZMP ZMP

COM COM

Stable (SSP)Stable (DSP)

Input

Layer Hidden

Layer

Output

Layer

17

Figure 2-7 Operations done by neurons on a single layer perceptron.

The neurons process on single-layer perceptron shows in Figure 2-7 is the math

calculations that denotes in the equation below:

1

n

i i

i

y f w x b
=

= +

 (2-7)

As shown in Figure 2-7 and denotes in Eq (2-7) the process can be described

briefly as follows. (i) First, the inputs
1 2 3, ,x x x are multiplied by variable weight

1 2 3, ,w w w before it being sum up. Each neuron connection has its weight
nw , and during

the learning process, those variables are the only parameter that will be tuned. (ii) Next,

a bias b value is added to the total value calculated, it is not a value from a specific

neuron. (iii) Finally, after all of those summations, the neuron applies a function called

“activation function” to the obtained value.

2.5. Deep Learning

Deep learning (DL) is a subset of machine learning forms by artificial neural

networks (ANN). The DL networks are similar to ANN but with deeper architecture

(multiple hidden layers). The learning methods in DL can be supervised (labeled data)

or unsupervised learning (not need labeled data). Additionally, in the DL algorithm, a

large dataset is required to trains the model. An instance of the illustrated deeper network

architecture of the DL model as shown in Figure 2-8.

Σ

1x
1w

2x
2w

.

.

.
nx

nw
b

v
Inputs

Weights Bias

Activation
Function

f y
Output

18

Figure 2-8 Deeper network architecture of ANN or called Deep Learning.

Despite the function of ANN, automatic data feature extraction is another

function of deeper network architecture. Moreover, the feature extraction in the DL

model layer is well famous applied in the image processing task. This layer is called a

convolutional layer, which can obtain feature maps from several filtrations on the image

(see Figure 2-9).

Figure 2-9 Convolutional Neural Network subclass of deep learning3.

Not only in image processing, several famous applications of DL as automatic

speech recognition, visual art processing, natural language processing, recommendation

systems, bioinformatics, fraud detection, mobile advertising, etc.

3 https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

19

2.6. Object Detection

Object detection in computer vision is a method to find a target object in a digital

image or video. Target object detection can be single and also multiple. In robotics

applications, object detection has become fundamental as robot perception. Therefore,

object detection can be divided into different types (see Figure 2-10). Whereas most

approaches in object detections are based on DL-Convolutional Neural Network (CNN)

approached.

Figure 2-10 Various types of 2D image object detection4.

 As shown in Figure 2-10, the types of famous object detection in the 2D frame

will be briefly introduced in respectively. (i) Semantic segmentation is a technic to label

each pixel in the image with a category label, it doesn’t differentiate instances and only

care about pixels. The most notable semantic segmentation is based on fully CNN

architecture [40]. (ii) Classification and localization are the common object detection

technique that finds object position and simultaneously classified the object name. There

are several famous researched on this approach: Faster R-CNN [41], Single Shot

MultiBox Detector (SSD) [42], You Only Look Once (YOLO) [43]. (iii) Instance

segmentation is different from semantic segmentation that includes identification of

boundaries of the objects at the detailed pixel level. Therefore, few works have focused

on instance segmentations: Mask R-CNN [44], FCIS [45], YOLACT[46].

4 http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

20

Object detection is not limited only to 2D frames. It has an expansive to 3D object

detection. Therefore, in computer vision, 3D object detection is obtained from point

clouds data that form a 3D model. See Figure 2-11, an example of 3D object detection

in object classification, part segmentation, and semantic segmentation by [47].

Figure 2-11 Types of 3D point cloud object detection by [47].

2.7. Reinforcement Learning

Reinforcement learning (RL) subset of machine learning that differs from other

types of machine learning. The main difference is that based on trial and error, there is

no supervisor and only depend on a reward signal. The environment is initially unknown,

where time matters. During the agents interact with the environment, it also improves

its policy.

Figure 2-12 Markov Decision Process of Reinforcement Learning5.

5 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf

observation action

reward Rt

Ot At

agent

environment

21

The flow process of RL as shown in Figure 2-12, the process is divided into

agents and environment interaction. Each step t by the agent: (i) executes an action
tA ,

(ii) receives observation
tO , and (iii) receives a scalar reward

tR . Meanwhile, in the

environment: it receives an action
tA , then emits observation

1tO +
, and finally receives

a scalar reward
1tR +

. These steps learning processes are performed periodically in

episodic time-based. This means that in every single episode, the process took a set of

actions based on increment at the environment step t . Therefore, the mathematical

formulation of the RL problems can be defined as Markov Decision Process (MDP).

A reward
tR is a scalar feedback signal, indicates how well an agent is doing at

step t . All goals can be described by the maximization of Eq (2-8) expected cumulative

reward:

1 2 ...t t t t nR r r r r+ += + + + + (2-8)

During the training process, an agent should care about immediate rewards to

rewards in the future. This is called a discounted factor 0..1 in cumulative reward.

If 0 = , means the agent only cares about the first reward. On the other hand, 1 = ,

means agents care about all future rewards.

2

1 2 ... n t

t t t t nR r r r r −

+ += + + + + (2-9)

The agent’s job is to maximize cumulative reward. To achieve that, RL must try

to get the optimal value function, i.e. the maximum sum of cumulative rewards. Bellman

equation [Eq (2-10)] helps the agent get the optimal value function.

'(,) max (', ')aQ s a r Q s a= + (2-10)

In model-free RL, to learn with no prior knowledge of the environment can use

the Temporal-Difference (TD) learning. The methods learn directly from episodes of

experience. It can be mathematical formulate in the below equation [Eq (2-11)],

observation before versus observation now:

22

'[max (', ')] [(,)]aTD r Q s a Q s a= + − (2-11)

Moreover, to learn the optimal value-function in the off-policy (randomly explore

the environment), TD learning is combined with the Bellman equation. Therefore, it also

called as Q-Learning and express in the below equation [Eq (2-12)]:

'(,) (1) (,) [max (', ')]aQ s a Q s a r Q s a = − + + (2-12)

Whereas, Q-Learning algorithm required a Q table to store the Q-values based on state,

action it takes, and rewards it acquires during the training process [48].

2.8. Deep Reinforcement Learning

In traditional RL algorithms, the major limitation of the approach is limited to

small problem spaces and few possibly state in the environment [48]. This is also called

Q-Table, where the size of the table depends on the numbers of action and state.

However, this method is not suitable when the states of the environment are substantial.

Later on, the famous Deep Reinforcement Learning (DRL) algorithm was introduced by

[49]. The authors utilized deep neural network architecture into RL, to replace the Q-

Table and called it Deep Q-Network (DQN). Admittedly, the benefit of DQN that agents

can learn a more complex environment. It allowing to have better generalization for

unknown states and able to take action that never seen before. The illustration of the

DQN algorithm is shown in Figure 2-13.

Figure 2-13 Deep Q-Network architecture [50].

23

Chapter 3: Methodology

In this chapter, the methodology of the proposed algorithm will be discussed.

The systems technique to approach this thesis is divided into four important parts. First,

overviews of the architecture THORMANG-Wolf adult-sized humanoid into hardware,

software description. Then, the proposed novel hierarchical learning method to solve the

Moving Large size and Heavy Object (MLHO) problem is described. Second, explains

the robot vision process. It distributed into two types of proposed DL object detection

that are 3D object detection and floor detection. Third, it presents the robot walking

controlling. It contains the biped robot walking controller in the ZMP walking controller.

Finally, the details of robot behavior controlling. It shows the proposed DRL algorithm

to achieve this dragging task. Deep Q-Learning is chosen as a type of DRL method to

control the walking meanwhile drags an object.

3.1. THORMANG-Wolf Robot

THORMANG (Tactical Hazardous Operations Robot) is a full-size

commercially available bipedal humanoid robot developed by (ROBOTIS, Inc) [51].

The main objective of the robot is to design an adult-sized humanoid robot as a

researched platform. Currently, the latest version of this robot is called THORMANG3

as shown in Figure 3-1(a). However, due to application requirements in this project, we

have a slight modification on THORMANG3 and named as THORMANG-Wolf. In the

rest of this sub-section, the details of our THORMANG-Wolf robot are discussed into

three parts including the hardware description, the software description, and the

proposed hierarchical learning-based algorithm design.

3.1.1. Hardware Description

The main difference in mechanical appearance between THORMANG3 robot

and THORMANG-Wolf robot is on the webcam of the robot. As original

THORMANG3 mechanical design has USB webcam Logitech C920 HD that has a

24

limited field of view (FOV), we replaced it with Logitech C930E version that has an

expansive 90-degree wide FOV6. The dimensions of the robot are stayed the same as

the original and illustrated in Figure 3-1(b). It has a height of 137.5 cm, a width of 42.4

cm, and its weight including the two batteries is 42 kg. The details specification of the

robot is shown in Table 3-1.

(a) THORMANG3 robot.

(b) THORMANG3 robot dimension (mm).

Figure 3-1 THORMANG3 adult-sized humanoid robot.

THORMANG-Wolf robot has wide ranges of manipulation and walking motions

with an overall 29 Degree of Freedom (DOF) in total. The actuators for robot kinematics

are consisting of three different models of Dynamixel-PRO series and 1-DOF two-

fingered Dynamixel hand. Hardware components of the robot are equipped with

advanced computational power and sophisticated sensors (see Figure 3-2). It has two

minicomputers, one monovision webcam, one depth camera, one LiDAR scanner, one

force and torque (F/T Sensors), and one speaker. The robot’s electrical power is supplied

through two batteries, which grouped into the 22.2 Volt for actuators and 18.5 Volt for

controllers and sensors.

6 https://www.logitech.com/en-us/product/c930e-webcam

1375

1686

222

424

25

Table 3-1 THORMANG-Wolf Specification Details.

Category Specification Value

Dimension Weight 42 Kg

 Height 137.5 cm

DOF Head 2 DOF

 Arm 2 × 7 DOF

 Leg 2 × 6 DOF

 Waist 1 DOF

Actuator H54-200-S500-R 10 × 200W

 H54-100-S500-R 11 × 100W

 H42-020-S300-R 8 × 20W

 RH-P12-RN 2 × 80W

Figure 3-2 THORMANG-Wolf hardware architecture.

The electrical components of the THORMANG-Wolf robot are shown in Figure

3-3. The main controller is distributed into three computers: (I) Perception Personal

Computer (PPC), (II) Motion Personal Computer (MPC), and (III) Operating Personal

Computer (OPC). Two computers (MPC and PPC) are attached to the robot and one

computer (OPC) is located outside of the robot. MPC handles the dynamic kinematic

system of the robot that computes every joints movement by translating into positions

of actuators. PPC for perception processing that is acquiring sensors data in the robot.

OPC works as manager processing to integrate the MPC and PPC. Therefore, to

accommodate a multi-computers communication system in this robot, a router located

LiDAR Scanner

Hokuyo UTM-30LX-EW

Gripper (× 2)

RH-P12-RN

FRONT

Webcam

Logitech C930e HD
Wireless router

Dlink DIR-806A

Mini-PC (× 2)

Intel® NUC Kit NUC5i5RYK

• Intel i5-5250U at 2.70 GHz

• DDR4 RAM 80GB

• M.2 SSD 128-GB

BACK

RGB-D

Intel RealSense R200

SpeakerBattery

18.5 Volt

Battery

22.2 Volt

F/T Sensor (× 2)

ATi Mini58-SI-2800-120

E-Stop Switch

Power Switch

IMU

MicroSrain 3DM-GX4-25

26

on the back of the robot is employed for the ethernet connection across this collaborative

computer system.

Figure 3-3 THORMANG-Wolf electrical components system.

3.1.2. Software Description

The software system of the THORMANG-Wolf robot was built initially using

the Robot Operating System (ROS) software. Whereas, the ROS Kinetic Kame version

is chosen as the compatibility version alongside with Ubuntu 16.04 (Xenial) operating

system. It is well known that ROS is a set of software libraries and tools that was

originally designed for robotic applications7. The main advantage of using ROS is the

message passing feature that can easily be developed under a multi-computer

communication system. Another benefit is the multi-language programming

compatibility. Therefore, the software description of the THORMANG-Wolf robot is

illustrated in Figure 3-4.

Figure 3-4 presented the simplified ROS graph architecture of the THORMANG-

Wolf robot on the dragging task. The core management of the systems is distributed into

three different computers. Those three types of computers are as follows respectively:

(i) PPC computer preprocess sensor perception acquisition on webcam and LiDAR

scanner into two different ROS topics: “/rgb_image” and “/point_cloud”. (ii) MPC

7 https://www.ros.org/about-ros/

ROUTER
LiDAR Scanner
IP Address: 10.17.3.20

RGB Camera

FTDI
USB-COM485-PLUS4

OPC

(Operating PC)
IP Address: 10.17.3.10

MPC

(Motion PC)
IP Address: 10.17.3.30

PPC

(Perception PC)
IP Address: 10.17.3.35

Depth Camera

IMU Sensor

Left

Arm &

Torso
5 DOF

Right

Arm &

Head
5 DOF

Left

Leg
6 DOF

F/T Sen.

Right

Leg
6 DOF

F/T Sen.

COM1 COM2 COM3 COM4

Ext. Port

(F/T Sensor)

USB

Ethernet

USB

RS485

27

computer provides “/robot_state” directly from the F/T and IMU sensors, then

subsequently calculates the dynamic kinematic in the “/CONTROL_MANAGER” to

read and write positions of each joint. (iii) OPC computer works as a management

substance inside the “/MAIN” node to manage behavior control from PPC sensor input

into the MPC action movement. Overall, those multi-computers systems were done

using ROS to have a synchronized system of a humanoid robot in perception, behavior,

manipulation, and locomotion.

Figure 3-4 ROS graph architecture performing a dragging task.

Note: ROS node and topic is represented by ellipses and rectangle shape respectively.

3.1.3. The Proposed Algorithm Design

The algorithm design for the dragging task in the THORMANG-Wolf robot is a

hierarchical independence framework at three different levels including robot vision

process, behavior control, and motion control. The details of those frameworks are

illustrated in Figure 3-5.

As it is illustrated in Figure 3-5, first, the vision process is divided into two sub-

categories: (I) Object detection and (II) Floor detection. Object detection reads point

clouds data from the LiDAR scanner and then feeds into the proposed DL for classifying

object type. A result of object detection results will be used to determine pre-recorded

manipulation motion for grasping the object. On the other hand, the floor detection uses

RGB images obtains from the robot webcam. It feeds the images into the proposed

lightweight DL algorithm for real-time instance segmentation on floor types detection.

So then, the floor type result goes to DQN to adjust the offset coefficient of the Centre

of Body (CoB).

/MAIN

OPC

MPC

/walking/foot_step_generator

/walking/balance_param

/CONTROL

MANAGER

/robot/status

/manipulation/static_pose
MPC

PPC

/point_cloud/LiDAR

/robot_state

/IMU

/FT
Sensor

/rgb_image

/WEBCAM

28

Figure 3-5 THORMANG-Wolf hierarchical framework data flow diagram.

Note: The term “Ack” indicating a process termination acknowledgment and red color shape points

out the proposed hierarchical deep learning algorithms.

Robot Vision ProcessInput

LiDAR

Raw
Image

Output

Actuators

Robot Behavior Control

DQN

Start

Robot Motion Control

Inverse

Kinematic

Walking

Gait

IMU
Sensor

F/T
Sensor

Static

Motion

Instructions

Control

Balance

Control

Object

Detection

Assemble

Laser
Filtering

Webcam
Floor

Detection
Filtering

Filtered
Range

Filtered
Image

Floor
Types

Point
Clouds

Range

Request

Motion

Planner

Request

N
ex

t

Positions

Req

Instructions

Object
Type

M
o
v
em

en
t In

stru
ctio

n
s

A
ck

Ack New Plan

Foot Step
Generator

Req

Balancing

Balance Parameter

Status

Status

Motion
Number

29

Second, the behavior control, which is also the main proposed DRL method in

this MLHO problem. For this purpose, we used a DQN algorithm to learn the parameter

of the walking balance control policy. This algorithm learns the behavior control based

on robot states that are acquired from IMU and F/T sensors. As a result, the setpoints of

XCoB parameters were tuned automatically by the DQN algorithm in real-time during

the dragging procedure.

Finally, the motion control, which handles all processes of robot movement. It

comes from instructions controls to take action in sequential order. Moreover, there are

two main functions of motion control are described as follows. At first, the grasping

motion act as a motion manager that can store and play the recorded grasping motions

for various objects. Then, followed by the walking control, it produces the walking

footstep generator by solving the inverse kinematics of legs using Pseudo Jacobian

Inverse and generates walking gait pattern.

VoxelFilterPoint Cloud

TileGreen CarpetPlywood

Floor Detection

Object Grasping

2 Meter

Dragging

3D Obj Classification

Static Grasp
Motion

STARTFINISH

Deep Learning

S
T

A
R

T

Deep Learning

E
N

D
Deep Q-Learning

Offset (-) Offset (+)Default

Offset CoM (x-axis)

Figure 3-6 Block diagram of the proposed DL algorithms to solve MLHO problem.

Note: the red color blocks are the proposed algorithms.

In this regard, based on the hierarchical framework of the algorithm design

illustrated in Figure 3-5, our proposed learning-based algorithms consists of three

learning phases respectively to solve the problem as follows: (i) Deep Learning

algorithm on 3D object classification. (ii) Deep Learning algorithm on real-time instance

30

segmentation for floor detection. (iii) Deep Reinforcement Learning algorithm on the

walking balance control policy. Therefore, to clarify the MLHO process in sequential

order, drawn a block diagram of the proposed hierarchical learning-based algorithm to

solve MLHO problems more clearly as illustrated in Figure 3-6. In summary, each part

of the data flow diagram in Figure 3-5 with the proposed hierarchical methods on the

MLHO problems will be described individually.

3.2. Robot Vision Process

It is a very significant point on a humanoid robot to have a vision system to

visualize the environment and identified objects. The problem of this dragging task can

be simplified to a robot need to know what kind of object it will move and on which

type of surfaces. In this section, the vision processing of the robot is divided into (I) 3D

object detection and (II) Floor detection (instance segmentation). However, both

processes are based on DL approaches and will be described below.

3.2.1. 3D Object Detection (Deep Learning)

Single two-dimensional (2D) images from a robot camera actually can provide

an instance of visual information to this problem. However, information from the 2D

image is limited to the two-dimension projection of length and width, whereas the three-

dimension (3D) of the object’s height is indistinguishable. Unlike 2D images, point

clouds data contains 3D data that provide a rich source of information. Therefore, the

point clouds are acquired by using the LiDAR scanner from the robot. The main

objective of this approach is to use the LiDAR scanner to classified objects. After the

object has been classified, the output will be used for selecting pre-recorded

manipulation motion to grasp the object.

It is well-known that the state-of-the-art 2D image object recognitions were based

on Convolutional Neural Network (CNN) [40-44]. The same concept also has been

applied for 3D point cloud data object detection by using CNN as well [47, 52, 53]. On

the other hand, in contrast to the camera, LiDAR has no interference with lighting

31

conditions that leads to increasing the robustness of the system. Therefore, the

implementation of this object classification algorithm is based on CNN. The general

flowchart of the proposed object classification is illustrated in Figure 3-7.

Figure 3-7 Flowchart DL algorithm of 3D object classification.

The working process on DL 3D object classification is described in the following.

First, the LiDAR point cloud data were acquired from the robot head’s scanning process.

As shown in Figure 3-8(a) the LiDAR point clouds data includes additional information

about the environment from scanned results. To tackle this issue, it is suitable to perform

filtering on point cloud data. Removing additional features from raw point clouds, in

other words, to extract important information, will lead to increases and robustness of

DL models. For this reason, a proposed heuristic algorithm is applied to filtering and

extract the object from a cluttered environment as shown in Figure 3-8(b). In this process,

Euclidean distance-based filtering to extract the object from the environment is proposed

and given by the following formula.

3

2

(,)

1

()p q i i

i

d p q
=

= − (3-1)

Where p , and q are two points in Euclidean space, then the distance d from

p to q is calculated by each axis i , indicate the axis of (, ,)x y z respectively. So, in the

Start
Voxel Grid Filter

Filter
Object

Deep Learning
3D Classification

Object Name

EndYes

No

LiDAR
Point Clouds

32

filtering process, if there was no object in front of the robot, it redoes the scanning

process for collecting the point cloud data.

Based on the structure of DL algorithms in general, DL models are required a

fixed amount of input size to feed into the model. Also, it is well-known that the total

number of points given each time of LiDAR scanned result has no fixed shape. To deal

with this, Voxel Grid (VG) filter is utilized to downsample the point cloud data into a

regular voxel grid representation [54]. Therefore, in the VG process, the filtered object

point clouds were discretized spatially as binary voxel at 30×30×30 volumetric

occupancy grid (see Figure 3-8(c)], where each voxel is assumed to have a binary state

(occupied or unoccupied). Next, a fixed size of voxels data (occupancy grids) is

continued to the input of the DL model. During this process, the DL model performs

mathematical calculations for processing this 3D classification task. Finally, the last

process also known as the output of the DL model will give a predicted answer based

on the highest probability to recognize which type of object.

Exploiting volumetric representation of the voxel data for 3D shape recognition,

the empirical applications of shape recognition have become popular in the DL-based

approaches [52, 53]. The most notable 3D shape recognition, that integrating a

volumetric occupancy grid representation with a supervised 3D CNN provided by [52].

In [52], the authors introduced VoxNet, as a 3D CNN multi-class classification task on

binary voxels data with a simple network architecture resulting in real-time performance.

One other research study on volumetric 3D object multi-class classifications was

presented in [53]. In [53], they proposed a lightweight Volumetric-CNN1 (V-CNN1)

model. In this method, the volumetric 3D object was represented in the form of a set of

spatially convoluted 2D images (known as feature maps). So, instead of using a 3D

convolutional layer, the authors use a 2D convolutional layer for convoluting the 3D

volumetric occupancy grid and achieved a faster training process (because of using

fewer parameters). Although 2D convolutional were outperformed in 2D images

classifications [40-44], the result was not as good as in the 3D occupancy grid [53]. It

shows on V-CNN1, the classification accuracy was slightly decreased in comparison to

VoxNet [52] (use 3D convolutional) on the same 3D data set.

33

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3-8 Example process of preprocessing 3D point cloud data.

Note: left figure: raw point cloud data, middle figure: filtered point cloud data, and right figure: after

voxel grid filter.

Regarding the two mentioned models in the previous paragraph, that were

outperformed on multiclass classification in the 3D volumetric occupancy grid.

However, there are shortcomings of existing models described as follows. In the VoxNet

model [52], the authors consider only a very small network that contains only two 3D

convolutional layers and two fully-connected layers. In this regard, shallow network

architecture caused the model lacks to generalize the data (learn more features on

various levels) [55]. On the other hand, in V-CNN1 [53], the authors used deeper

network architecture (depth-5 layers) but fail to establish a relationship between 3D data

from the 3D convolution benefits. So, in this thesis, we proposed a new model called

Three-layers Convolution Volumetric Network (TCVN) as a robust learning method to

tackle issues of previous models. As shown in Figure 3-9, TCVN is based on the VoxNet

and V-CNN1 reference concept, which is using deeper network architecture along with

a 3D convolution layer.

As shown in Figure 3-9, the proposed model using a volumetric occupancy grid

computed with size 30 × 30 × 30. This model consists of three 3D convolutional layers,

all with 32 filters of size 3 and stride 1. Correspondingly, the convolution layers are

followed by batch normalization and three ReLU activation functions along with two

34

max-polling layers. The ReLU layer is to introduce non-linearity in the model by

activating only positive neurons. The pooling layer following ReLU ensures that

neurons do not contribute to the model from learning redundant information of spatial

voxel. Also, there are two fully connected layers in the last part of the model, where the

final fully connected layer used a SoftMax function to normalize the probability

distribution of each class score. During the training, dropout with a probability of 0.5 is

used to prevent overfitting, and an Adam optimizer with a standard base learning rate of

0.001 was employed for updating the model weights. Overall, the details of the proposed

model are presented in Table 3-2.

Table 3-2 The network details of the TCVN model.

Layer type
Filter size /

Dropout rate
Stride Output Size

Number of

parameters

Convolution 3D 3 × 3 × 3 1 × 1 × 1 32 × 30 × 30 × 30 896

Batch Norm. - - 32 × 30 × 30 × 30 128

ReLU - - 32 × 30 × 30 × 30 -

Max pooling 3D 2 × 2 × 2 2 × 2 × 2 32 × 15 × 15 × 15 -

Convolution 3D 3 × 3 × 3 1 × 1 × 1 32 × 13 × 13 × 13 27680

Batch Norm. - - 32 × 13 × 13 × 13 128

ReLU - - 32 × 13 × 13 × 13 -

Convolution 3D 3 × 3 × 3 1 × 1 × 1 32 × 11 × 11 × 11 27680

Batch Norm. - - 32 × 11 × 11 × 11 128

Max pooling 3D 2 × 2 × 2 2 × 2 × 2 32 × 5 × 5 × 5 -

Dropout 0.5 - 32 × 5 × 5 × 5 -

Fully connected - - 2048 8194048

Batch Norm. - - 2048 8192

Fully connected - - 5 10245

Figure 3-9 The network architecture of the TCVN model.

Conv(32,3,1) / ReLU /

BN / Max-Pool(2,2)

Conv(32,3,1) /

ReLU / BN /

Conv(32,3,1) / ReLU /

BN / Max-Pool(2,2)

5

2048

...
...

...

1 × 30 × 30 × 30

32 × 12 × 12 × 12 32 × 10 × 10 × 10 32 × 5 × 5 × 5

35

3.2.2. Floor Detection (Deep Learning)

One of the important features in MLHO tasks is a humanoid robot should know

in what type of floor it performs the dragging task. In this section, the object instance

segmentation technique is employed for the floor detection from the robot camera.

Therefore, this algorithm will identify partitioning pixels image into a segmentation

mask of floor area. As a result, the segmented pixels provide the information in which

type of ground it performs the dragging task. Figure 3-10 shows three different types of

floors where the humanoid robot will be evaluated on the dragging task.

(a) Plywood.

(b) Green carpet.

(c) Tile

Figure 3-10 Types of floors used in this experiment.

The state-of-the-art instances segmentation was introduced by [44]. In [44], the

authors introduced Mask-RCNN that was built with focuses on performance. However,

these instance segmentations are accurate but it only runs on 5 frames per sec (fps) on

modern computer hardware. The main reason, because they force using expensive re-

pooling operation in the ROI-align. Also, the Mask-RCNN model used a two-stage

detector, which means the computational in the model happened in sequentially.

Later on [45], the authors introduced a real-time instance segmentation called

YOLACT (You Only Look at Coefficients) that beats state-of-the-art instance

segmentation in terms of speed. They used a one-stage detector and produce two parallel

parts solution to split mask computation. First, they create a set of “prototype” mask for

the whole image. Second, linearly combine those prototypes using coefficients from the

prediction head.

As shown in Figure 3-11, the design of YOLACT network architectures is

presented in detail. First, the model uses the standard Residual Network (ResNet) with

36

Feature Pyramid Net (FPN) as the backbone network. Then, FCN (“Proto Net”) is

attached to the largest FPN layers to produce this whole prototypes masks. Second, in

parallel, the standard “Prediction Head” predicts the linear combination coefficients for

each anchor box. Finally, the models do some minimal post-processing (crop and

threshold) to obtain the final mask.

69×69

×256

W×H

×256

69×69

×256

138×138

×256

138×138

×k

W×H×

256

W×H×

4a

W×H×

ca

W×H×

ka

Class

Box

Mask

C1

C2

C3

C4

C5

ResNet
Feature

Pyramid Net

P3

P4

P5

P6

P7

Input Image

Prediction Head

Proto Net

Crop

Threshold

Result Image

Figure 3-11 YOLACT network architecture [46].

For training the mask branch, a pixel-wise loss is applied only on the final

assembled mass. Thus, the prototypes and linear combination coefficients only get

downstream supervision from the mask loss. This means the combination is not

constraining of any semantic. Therefore, the leads to the prototypes taking on some

various translation variants in a fully convolutional network.

Furthermore, as stated in the original of ResNet [56], the authors validated deeper

residual network lead to lower loss value that improved the accuracy. Therefore, in [46],

the authors use ResNet-101 as the default backbone in the YOLACT model. They

trained the model with a base size image 550 × 550 on advanced Microsoft-Common

Object in Context (COCO) dataset. Furthermore, their method achieved results above

30 fps on the COCO dataset by using the ultimate graphic processing unit (GPU)

NVIDIA Titan XP.

37

As shown in Figure 3-12, the ResNet building blocks are categorized into two

types. (i) Figure 3-12(a) illustrated the two sequential convolutional layers in the basic

block for building ResNet-18 and 34 block function. (ii) Figure 3-12(b) shown a deeper

network of three sequential convolutional layers to build a bottleneck block function of

Resnet-50, 101, and 152.

Table 3-3 The adopted ResNet architecture and number of parameters [56].

layer name output size 18-layer 34-layer 50-layer 101-layer

conv1 112 112 7 × 7, 64, stride 2

conv2_x 56 56

3 × 3 max pool, stride 2

3 3,64
2

3 3,64

3 3,64
3

3 3,64

1 1,64

3 3,64 3

1 1,256

1 1,64

3 3,64 3

1 1,256

conv3_x 28 28
3 3,128

2
3 3,128

3 3,128
4

3 3,128

1 1,128

3 3,128 4

1 1,512

1 1,128

3 3,128 4

1 1,512

conv4_x 14 14
3 3,256

2
3 3,256

3 3,256
6

3 3,256

1 1,256

3 3,256 6

1 1,1024

1 1,256

3 3,256 23

1 1,1024

conv5_x 7 7
3 3,512

2
3 3,512

3 3,512
3

3 3,512

1 1,512

3 3,512 3

1 1,2048

1 1,512

3 3,512 3

1 1,2048

 1 1 average pool, 1000-d fc, softmax

FLOPs 91.8 10 93.6 10 93.8 10 97.6 10

Number of Parameters 11.176.512 21.284.672 23.508.032 42.500.160

 (a) Basic block (for ResNet-18/34)

(b) Bottleneck block (for ResNet-50/101/152)

Figure 3-12 Building block (residual function) of ResNet [56].

3×3, 64

3×3, 64

ReLU

ReLU

64-d

1×1, 64

3×3, 64

ReLU

3×3, 64

ReLU

ReLU

256-d

38

Generally, the original YOLACT model was tested to predict 80 class categories

in the COCO dataset. However, the objective in this floor detection was simplified only

to detect three types of objects, which is much simpler compared to the COCO dataset.

Therefore, in this section proposed a new simple model called Tiny-YOLACT. This

proposed model is fully based on YOLACT architecture with modification only on the

backbone network. The main advantage of the Tiny-YOLACT model that it uses

ResNet-18 & ResNet-34 which has a smaller number of weight parameters. As a result,

this model can also run on a moderate level NVIDIA GPU. The details of each network

architecture of ResNet and total numbers of parameters presented in Table 3-3.

3.3. Robot Motion Control

In this section, the development of robot motion controlling as shown in Figure

3-5 is centralized in the motion planner. Wherefore, it consists of a grasping motion and

the main walking control itself. However, both will be described below.

3.3.1. Object Grasping

(a) Office chair

(b) Foot chair

(c) Small suitcase

(d) Big suitcase

Figure 3-13 Sample pre-recorded motion for grasping different types of objects.

The first step to drag an object is to grasp it properly. There are many researched

focuses on manipulation grasping different types of objects. However, the objective of

this work is to focus on designing a balanced walking on BHR to solve the MLHO

problem. Therefore, to grasp the experimental object, whole-body motion capture is

39

employed to record the robot gesture. Moreover, it is natural for a humanoid robot with

a design similar to human structure, for imitating human motion on grasping an object.

As shown in Figure 3-13, the robot postures on different objects were recorded. So then,

those motions will be used when the robot has identified the object from the output of

3D object classifications.

3.3.2. Walking Control

The THORMANG-Wolf robot used a closed-loop walking engine based on Zero

Moment Point (ZMP) walking control [57]. The closed-loop walking engine of biped

humanoid robots can be illustrated like a cart-table model as shown in Figure 3-14. First,

a cart with mass M running on a lightweight table with mass is insignificantly small.

Then, the size of the table foot is too narrow to stabilize the cart on the table edge.

Therefore, the table-cart models show by keeping cart runs on certain accelerations it

can keep a spontaneous balance of the table. Same like biped humanoid robot walking

on the ground, the position of ZMP is given as:

 cz
p x x

g
= − (3-2)

Where x is the moving coordinate,
cZ is the constant height of the Center of

Gravity (CoG), g is the gravity and x is the acceleration. Walking pattern generation

based on a cart-table model takes the trajectory of CoM as input and resulting ZMP as

output. Therefore, ZMP based walking pattern generation is an inverse form of a 3D

linear inverted pendulum. Regarding a cart-table model as a dynamical system, the CoM

motion starts before the changes of the ZMP. This means the cart must move before the

change of input in the system.

40

Figure 3-14 Cart-table model

Note: Robot walking behavior is close to a cart moving on a massless table. The condition of the moving

cart decides the center of pressure operating from the floor (the cart is changing ZMP).

In [58], the authors used cart-table model as a dynamical system and designed a

pattern generator, which is called preview-control as shown in Figure 3-15.

Figure 3-15 Walking pattern generation based on preview control

Figure 3-15 shows a block diagram for the walking pattern generator based on

the ZMP preview control. First, we regard the reference ZMP and the cart status

calculation in FIFO buffer as the input of the preview control system. Then, the control

vector ku can be obtained by Equation (3-3) based on the ZMP reference and the cart

current state. While according to the system equation, the position on x axis and y axis

of CoM is the result of pattern generation. With this information, the CoM trajectory is

taken from the position of the cart.

()

0 1
k

k n
ref ref

k s i j x k j p

i j

u K p p K x G p
= =

= − − − +
 (3-3)

m

O

cZ

x

x

p

Preview Control

...

m

O

cZ

x

x

−+

u

x

p

Future

ZMP References
FIFO

ref

k Np +
refp

1

re f

kp +

41

Where , ,s x jK K G are the gains for preview controller, refp is the ZMP reference,
jp

is the ZMP output,
kx is the state of the cart including position, velocity, and acceleration.

Inverse

Kinematic

Balance

Algorithm

Offset CoMIMU & F/T Sensor

Balance Algorithm
(PD Control Based)

Walking Pattern

Generator

Foot Trajectory

Generator

Foot Step

Data

+
 lf (x,y,z, θ,
 rf (x,y,z, θ,
 CoM(z, θ,

lf (x,y,z, θ,
rf (x,y,z, θ,
CoM(z, θ,

lf (x,y,z, θ,
rf (x,y,z, θ,
CoM(z, θ,

CoM(x,y)

 CoM(x,y)

Figure 3-16 Walking gait pattern generation process.

Note: Red block is the parameter to be controlled by our proposed methods.

The process of walking gait generation processes of THORMANG-Wolf robot

shown in Figure 3-16 is described as follows. First, the footstep data takes an input of

step-number, step-time, step-length, side-step-length, and step-angle-degree to

generates footstep data array. Then, the footstep data planning is used to produce a

walking pattern and foot trajectory. Therefore, as described in Figure 3-15, the walking

pattern generation generates the CoM trajectory in ,x y axis for the ZMP tracking

control system. Meanwhile, on the foot trajectory generator, we use a sigmoid pattern

to generate the gait pattern and obtain trajectories of the CoM and ankles. As a result, it

generates a smooth gait pattern when lifting a leg during the walking phase. Next, we

use the balance algorithm to adjust the walking trajectory for keeping the robot stable

during walking.

The balancing algorithm calculates the difference between the reference and

actual pose of the robot based on the robot state. Therefore, an Inertial Measurement

Unit (IMU) sensor with Force and Torque (F/T) sensor is used as feedback to read the

robot state. Moreover, the additional offset of CoM in ,x y axis will be used for the

behavior control on the deep reinforcement learning. As a result, the balance algorithm

and offset CoM are combined. Thus, the equation become

42

g

g

g

lf lf lf

rf rf rf

CoM CoM CoM

 = +

= +
 = +

 (3-4)

Where , ,g g glf rf CoM are defined as goal coordinate of the left foot, right foot,

and Centre of Mass, is the difference offset resulting from the balance algorithm.

Finally, we utilized an inverse kinematics solver to calculate all the angles of joints on

the legs from the result of Equation (3-4).

3.4. Robot Behavior Control

As illustrated in Figure 3-5, the THORMANG-Wolf robot software system is

comprised of a behavior-controlling level. At this level, we proposed a Deep Q-Learning

to Learn the Centre of Body (DQL-COB) algorithm for the behavior control of

THORMANG-Wolf robot on this dragging task. It is worth mentioning that the

proposed DQL-COB is part of the proposed hierarchical DL algorithm design in terms

of the DRL algorithm on the walking balance control policy. Therefore, the output from

the DQL-COB algorithm resulting in a Centre of Body in X-Axis (
XCoB) offset value,

as the parameter to the robot walking module. The integration of the walking module

with the DQL-COB algorithm is illustrated in Figure 3-17.

Figure 3-17 Integration walking module with the DQL-COB algorithm.

Based on this figure, the flow process of unified systems is divided into two

central control and described as follows. First, on behavior control where the array

footstep data generated from the footstep generator will be given to walking module.

THORMANG3

Walking Controller Behavior Controller

OPC

IMU
Sensor

Force Torque
Sensor

Sensor

Module

Walking

Module

DQL-COB

Foot Step

Generator

Balance Parameter

State

Foot Step Data Array

43

Then, walking control will generate the walking gait pattern and also activate the

balance control (see Figure 3-16). Next, the robot starts to walk derived by walking

module. Finally, the DQL-COB algorithm will provide a balance parameter based on

the closed-loop feedback state of the robot continuously and in real-time.

One of the objectives of this thesis problem is to have a balance backward

walking meanwhile dragging large size and heavy objects. Therefore, the initial step for

applying the RL-based algorithm is to create or set up an environment for the agent to

interact. Hence, to avoid costly experiments in terms of time and physical training, the

environment and training process was done in the Gazebo8 simulator that also integrated

with ROS. As shown in Figure 2-12, MDP is the mathematical formulation of the RL

problems. Also, Markov's property represents the current state completely characterizes

the state of the world. Therefore, MDP also defined by a tuple object (, , ,)S A R P .

3.4.1. DQL-COB Algorithm Design

In the rest of this section, the proposed DQL-COB algorithm including five

phases to solve the MLHO problems are described respectively.

 States space

The first tuple object of MDP is the set of possible states S in an environment.

Since the aim is to have balance dragging actions. Therefore, utilizing data from the

Inertial Measurement Unit (IMU) with Force and Torque (F/T) sensors for reading the

robot state whether robots in stable condition or not. Generally speaking, the IMU sensor

has a characteristic of angular value output to represent each of the axes. The IMU

sensors in the THORMANG-Wolf robot illustrated in Figure 3-18 (a) consists of 6 DOF.

However, in this environment, only the pitch and roll axis were selected as an important

feature to provide into the agent.

It is well-known that to normalized the data before feed data into a deep neural

network. Therefore, in the NN literature, normalizing also often refers to rescaling by

8 http://gazebosim.org/

44

the minimum and range of the vector, to make all elements lie between 0 and 1. For this

purpose, IMU pitch and roll angles are normalized to comply with that. It can also

achieve an efficient training process by having a faster training process (due to the

mathematical structure of calculation in a neural network).

(a) 6-DoF axis IMU sensor

(b) Normalize theta of IMU Pitch & Roll using sin .

Figure 3-18 IMU sensor as a state of the environment.

In contrast to the IMU sensor, the F/T sensor located in the robot’s ankle also

provide the robot state. It acts as a perceiving robot’s foot state whether on the ground

or air. Particularly, the torque sensor gives output in vector product of the force

magnitude and the perpendicular distance of the action force line (see Figure 3-19). Due

to the complexity number given by torque sensors, those values are preprocessed using

the binarization method before feed into the deep neural network. The binarization

process is explained in Algorithm 1.

Figure 3-19 Torque vector on both feet.

45

The algorithm 1 details are explained in the following. First, initializing constant

threshold value for each foot. Due to torque values are in a three-dimension vector,

therefore obtaining the length of the torque vector was done by calculating Euclidean

distance towards the origin axis (0,0,0) . Finally, after vector distance is acquired,

thresholding the values for each foot to binarized it: 0 if foot on the air and 1 if a foot

on the ground. These processes are repeated in a loop for each foot.

Algorithm 1: Binarization torque sensor

1. Initialize threshold T for each foot M

2. For j = 1, M do

3. Calculate Euclidean distance
3

2

1

(0)j i

i

d p
=

== −

4. Set
0

1

j j

j

if d T
y

otherwise

=

5. End For

So, the total states in this environment are 4 states. Given by normalized IMU

pitch and roll, also the binarized torque value of each foot. Which is the state S can be

denoted as (, , ,)Pitch Roll Lfoot Rfoot .

 Actions space

The second tuple object of MDP is the set of possible actions a in an

environment. As illustrated in Figure 3-20, the action in this DQN approached is

simplified to offsetting the parameter of the balance control algorithm in the Center of

Body in X axis (
XCOB). The main concept to achieve stable walking meanwhile

receiving disturbance is by keeping ZMP point in the support polygon. Therefore, the

offset of the Center of Body in the x-axis is the most critical point to achieve that. So,

in total there are 3 actions to be learned by the DQN agent. Those actions are for

increment, decrement, and do nothing towards the offset parameter
XCOB .

46

(a) Offset (-) COB X

(b) Default COB X

(c) Offset (+) COB X

Figure 3-20 Action offset on COB X.

 Rewards function

The third tuple object of MDP is the value of the reward R from distribution

given by (state, action) pair. In this environment, reward functions were calculated from

two main factors. Figure 3-21 illustrates those factors that are from the IMU pitch sensor

and traveled distance toward the goal target. The details of reward functions are

presented in Algorithm 2.

First, rewards based on the balance factor, the reward is calculated on how a robot

could maintain its pitch angles during the dragging task. Therefore, the robot’s pitch

angle denoted as , if the degree within the threshold range, means robot in stable

condition then 1r is 1. Conversely, when it is out of the stable threshold range then 1r

it will less than 1, it calculated from the division of the error differences of the threshold

t . Consequently, if the robot falls then the agent will get a -1 reward or called

punishment, it also terminates the step.

Second, the reward is based on accomplished walk distance. Additionally, in this

study, the target distance that the robot requires to walk is to drag an object for 2-meter

and walking backward. Therefore, another 2D Euclidean distance utilized to measured

walk distance for reward 2r calculation. It means, the closer to the finish line, the

distance reward 2r will be close to 1. Furthermore, when robots finished dragging or

47

successfully walk in 2-meter the 2r will also be 1. Overall, the total reward function r

is obtained
1 2r r .

Algorithm 2: Reward function

1. Initialize threshold t for a stable state 9. Initialize f for finish distance

2. if t is fall then 10. if d is finished then

3.
1 1r = − 11.

2 1r =

4. else if t > > t− then 12. else

5.
1 1r =

13. 2
1r

f d
=

−

6. else 14. end if

7.
1

1r
t

=
−

8. end if 15. 1 2r r r=

(a) Based on pitch

(b) Based on distance

Figure 3-21 Reward based on robot pitch state and finished distance.

Finally, the total cumulative reward will be obtained from cumulating this reward

tr in each step. Then, the RL algorithm agent tries to find an optimal policy to receive

maximum rewards by keeping robot stables in the desired pitch angle and walk-in

backward direction as close as to finish line target.

 Deep Q-Network

The main objective of the RL algorithm is to find an optimal policy * that

maximizes the expected sum of rewards. Therefore, an agent acts in the environment

PITCH

48

and receives a reward, where the optimal Q-value function *Q is the maximum

expected cumulative reward achievable from a given (state, action) pair of the following

policy.

0 0

0

*(,) | , ,t

t

t

Q s a E r s s a a

= = =

 (3-5)

Solving for that, a Deep Q-Learning uses a deep neural network as a function

approximator to estimate the action-value function. Therefore, the Q-value function is

determined by those neural network data parameter weights. Given this function

approximation, finding the optimal policy it requires to calculate the Q-function that

satisfies the Bellman equation.

*

'~
'

(,) max *(', ') | ,s
a

Q s a E r Q s a s a = +

 (3-6)

DQN algorithm enforces the Bellman equation to have neural network

approximating Q function. Therefore, it can be accomplished by training the network

where the loss function is going to minimize the error of the Bellman equation. However,

the forward pass of the neural network is given by the following equation.

2

, ~ (.)() ((, ;))i i s a i iL E y Q s a = − (3-7)

Where,

 '~ 1
'

max *(', ';) | ,i s i
a

y E r Q s a s a −
 = +

 (3-8)

and the backward pass (gradient updates concerning Q-function parameters)

 () (), ~ (.); '~ 1
'

() max *(', ';) , ; , ;
i ii i s a s i i i

a
L E r Q s a Q s a Q s a −

 = + −

 (3-9)

Furthermore, the proposed deep neural network architecture for estimating Q-

function is shown in Figure 3-22. In this situation, the goal is directly predicting Q-

49

function over a network (concept: doing regression towards Q-value). Therefore, the

proposed model consists of 3 fully connected layers. The first layer or also the input

layer receives the state from the robot. Then, the second and third layer consists of 128

and 64 neurons with ReLU activation respectively. Finally, the last layer has a vector of

output, calculates Q-value corresponding to each action.

Table 3-4 Details of the Q-Network architecture.

Layer type Neurons
Number of

parameters

Input 4 -

1st Hidden Layer 128 640

ReLU 128 -

2nd Hidden Layer 64 8256

ReLU 64 -

Output Layer 3 195

Figure 3-22 Hierarchical Q-Network architecture.

Since the proposed network has 3 actions, there is 3 scalar value (Q-values) given

by
1 2 3(,), (,), (,)t t tQ s a Q s a Q s a . By using neural network structure, efficiently a single

feedforward pass can compute Q-values for all actions from the current state. Overall,

the details of the proposed model are presented in Table 3-4.

 Training Process

As described before, based on loss function on Eq (3-7), the aim is to iteratively

make Q-values as close to target values. However, learning from batches of consecutive

128

64

4
3

50

samples is problematic. In [49], the authors evaluated learning directly from consecutive

samples is inefficient, it has highly correlated data. Because current Q-network

parameters determine the next training samples, it leads to bad feedback loops.

Therefore, addressing that problem by using experience replay. Storing the transition of

history states
1(, , ,)t t t ts a r s +

 in replay memory and minibatch randomizing the samples

breaks these correlations and reduces the variance of the updates.

Figure 3-23 Experience replay illustration on training data.

As shown in Figure 3-23, red and green dots present the correlated data. On the

other hand, oranges dot breaks the correlation by randomized sample the experience.

During training, the Q-learning uses the Eq (3-10) as the loss function with sample

experience replay memory on the forward pass.

 ()
2

(, , , ') '() ~ () max (', ';) (, ;
ii i s a r s a iL E U D r Q s a Q s a − = + −

 (3-10)

Another problem listed on [49], RL algorithm is considered non-stationary

distributions. It is unstable or even divergent when a nonlinear function approximator

(e.g. neural network) is used to represent the action-value (Q-function). Therefore, using

an iterative update to adjusts the Q-values towards target values within periodically

update, it can reduce correlations with the target. This solution also illustrated in Figure

3-24.

51

Figure 3-24 Solution to non-stationary target DQN.

As shown in Figure 3-24, target values are calculated by using a target network,

which is the duplicate network of the learning network. Whereas, the weight parameters

of the target net using an older set of parameters and periodically update. It made effects

on targets
iy , which make oscillations and divergence more unlikely. During training,

greedy − algorithm shown in [Eq (3-11)] is used for the exploration and exploitation

problem.

 * 1

optimal a
a

random

−
=

 (3-11)

Moreover, in [49], the authors also evaluated clipping the error from the update

'max (', ';) (', ';)a i ir Q s a Q s a −+ − to be between -1 and 1. The benefit of error

clipping leads to stability training. Since the absolute value loss function x has a

derivative of -1 for all negative values and a derivative of 1 for all positive values.

Therefore, for error values outside of the range (-1,1), this clipping error is similar to

using an absolute value loss function. Identically, the approach in this dragging task is

similar to the approached done by [49]. Whereas, the whole training process explained

above is illustrated in Figure 3-25.

52

Figure 3-25 Block diagram of Deep Q-Network on ROS Gazebo simulator.

Putting all those together, the block diagram in Figure 3-25 also represented in

Algorithm 3. The details of those are described briefly. First, initialize replay memory

D with some capacity N and also initialize Q-Network with some random initialize

weight . Then, start to train the dragging task with the episode M . This loop for

training the whole episode. Afterward, initializing the state S by resetting the simulator

and acquired robot initial state at the beginning of each episode. Note that, the state S

is the preprocessed robot state (, , ,)Pitch Roll Lfoot Rfoot .

During, each time step t of the training, it will generate a small probability for

select random action. In this process, the algorithm requires to have sufficient

exploration to sample enough state space. Otherwise, it acts base on greedy action from

the current policy. Therefore, most of the time it will take greedy action based on the

best knowledge of the type of action and desired state.

The next step, acting
ta , observe reward

tr , and the next state
1ts +
. Then, store

transition
1 1(, , ,)t t t ts a r s+ +

 in replay memory D . Currently, it will train the network

Policy Net

(Neural Network)

Q-Values

Epsilon GreedyAction

Replay Memory

Optimize (5)

Target Net

(Neural Network)

Rewards or

Penalty

Update (4)

State

Environment

• IMU Pitch

• IMU Roll

• Left Foot Torque

• Right Foot Torque

53

meanwhile sample random mini-batch of transition (, , , ')s a r s from D and perform

gradient descent step. So, these are full training loop and continuously drag the object

in the Gazebo simulator and also sampling minibatch using experience replay to update

Q-network weight .

Algorithm 3: Deep Q-Learning with Experience Replay

1. Initialize THORMANG-Wolf PPC & MPC modules

2. Initialize replay memory D to capacity N

3. Initialize action-value function Q with random weights

4. Initialize target action-value function Q̂ with weights − =

5. For episode = 1, M do

6. Initialize sequence 1 1s x= and preprocessed sequence ()1 1s =

7. For 1t = , T do

8. With probability select a random action
ta

9. Otherwise select argmax ((), ;)t a ta Q s a =

10. Execute action
ta in the emulator and observe reward

tr and state
1ts +

11. Set
1 1, ,t t t ts s a x+ += and preprocess

1 1()t ts + +=

12. Store transition
1(, , ,)t t t ta r +

 in D

13. Sample random minibatch of transitions
1(, , ,)j j j ja r +

 from D

14. Set

' 1

if episode terminates at step j+1

ˆ otherwisemax (, ';)

j

j

j a j

r
y

r Q a −

+

=

+

15. Perform a gradient descent step on
2((, ;))j j jy Q a − for the network

 parameters

16. Every C step reset Q̂ Q=

17. End For

18. End For

54

Chapter 4: Experimental Result

As mentioned in the introduction, the objective of this thesis was divided into

robot vision and behavior methods. Therefore, in this chapter, to prove the accuracy of

the proposed methods first, we describe the experimental setup. Then we conducted and

evaluated proposed DL algorithms into robot vision and behavior sections. To this end,

in the robot vision, first, we show experiments on 3D object classification, where the

accuracy of the proposed TCVN model are compared to classified 4 types of a 3D object.

Second, we show experiments of the floor detection on three different surfaces to show

the performance of the proposed lightweight Tiny-YOLACT (real-time instance

segmentation model).

Accordingly, in the robot behavior, first, we show an evaluation of the simulation

result, where the training result of the proposed DQL-COB algorithm is compared in

two scenarios. Hence, in one scenario we use IMU along with foot Pressure (F/T) sensor,

in the second scenario we just use IMU data as learning algorithm input. Second, we

show an empirical evaluation of the proposed DQL-COB algorithm on the

THORMANG-WOLF robot. In this experiment, we demonstrate for the first time, a

novel implementation of the deep reinforcement learning method that utilizing training

results in simulation to a real humanoid robot for solving the MLHO problems.

As far as we know to the best of our knowledge, the DQL-COB algorithm solves

for the first time in this MLHO problem. Therefore, we evaluated two types of

experiments on three types of surfaces with eight different objects. In these experiments,

there are two schemes of data inputs (the same as the simulation) are compared. Finally,

it is worth mentioning that the robustness of the walking controller is not being analyzed

because designing walking control is not the focus of this thesis.

55

4.1. Experimental Setup

To evaluate the proposed method, we implemented, conducted, and validated

different experiments on the THORMANG-Wolf robot (section 3.1). The hierarchical

method consists of three proposed algorithms including the TCVN model, Tiny-

YOLACT model, and DQL-COB algorithm. The entire code was implemented in the

Python programming language. In this regard, the standard python open-source neural-

network libraries Keras 9 and machine learning libraries PyTorch 10 were used to

implement the deep learning models on the proposed methods.

Our experiments are conducted on the common objects and surfaces available in

human daily life. Table 4-1 and Table 4-5 are presented the experimental surfaces and

objects respectively.

Table 4-1 Experimental surfaces.

No. Surface

1. Plywood

2. Green Carpet

3. Tile

Table 4-2 Experimental objects.

No. Object Type Weight

1. Default (No Object) 0 Kg

2. Office Chair 12.3 Kg

3. Office Chair with Load 33.5 Kg

4. Foot Chair 1.3 Kg

5. Small suitcase11 6.2 Kg

6. Small suitcase with Load 26.2 Kg

7. Big Suitcase12 18.6 Kg

8. Big Suitcase with Human 84.6 Kg

As shown in Table 4-2, the overall 8 objects are a set of collections from a few

similar objects with different loads that are invisible in 3D object visual. Therefore, in

the conducted experiments for the 3D object classification, there are only 4 objects

selected to represent those 8 objects.

9 https://keras.io/
10 https://pytorch.org/
11 https://www.pelican.com/us/en/product/cases/carry-on-case/protector/1510
12 https://www.pelican.com/us/en/product/cases/cube-case/protector/0370

56

Moreover, in the conducted walking for the dragging task, the robot is required

to walk in a straight-line trajectory with a backward direction for 2 meters. Therefore,

the configurations of the foot-step generator for walking are shown in Table 4-3.

Table 4-3 Foot-steps parameter.

Parameter Value

Step Number 12

Step Time 1.0 s

Step Length 0.1 m

Side Step Length 0.05 m

Step angle degree 5 deg

Generally, the whole training process of the three proposed algorithms are trained

on a single computer. The details of the deep-learning computer are shown in Table 4-5.

Therefore, the proposed approaches are tested on the OPC (a laptop to operate the

THORMANG-Wolf robot). In this situation, OPC is used for running the inference of

those trained models and integrating it into the THORMANG-Wolf robot. Table 4-5

presented the details of laptop hardware (OPC) used in this whole evaluation test.

Table 4-4 Deep-learning computer hardware specifications.

Name Information

Processor Intel Core i7-8700H (8th Gen) / 3.2 Ghz

Graphic NVIDIA GeForce GTX 1080Ti / 11 GB

Memory / Type 32 GB / DDR4 / 2666 Mhz

Storage 240 GB 2.5in SATA SSD

Table 4-5 OPC (laptop) hardware specifications.

Name Information

Processor Intel Core i7-8750H (8th Gen) / 2.2 Ghz

Graphic NVIDIA GeForce GTX 1060 / 6 GB

Memory / Type 16 GB / DDR4 / 2666 Mhz

Storage 256 GB NVMe PCIe Gen3

To evaluate the performance of the 3D object classifier of the TCVN model, the

statistical table called confusion matrix is utilized to draw the error of prediction in the

test dataset, in which the true values are known. Moreover, to evaluate the Tiny-

YOLACT model performance on floor detection, the mean Average Precision (mAP)

57

value is used as the model benchmark during training. Additionally, frame per sec (fps)

rate is utilized to evaluate the speed of the models in terms of video processing times.

Also, to evaluate the robustness of the DQL-COB algorithm, the error in this experiment

was based on robot traveled distance and stability. Therefore, error values were

calculated by Euclidean distance of robot final position and related to the starting

position tracked by a global camera with the ArUco marker attached on top of the robot.

4.2. Experimental Result for Robot Vision

The evaluation results of the robot vision-based deep learning methods are

described in this section. Moreover, all data used in this evaluation are captured

manually using the THORMANG-Wolf robot’s webcam and LiDAR scanner.

4.2.1. 3D Object Classification Result

In this subsection, collected 1200 data of 4 objects that are illustrated in Figure

4-1. Each data is labeled according to the object's name. Then, the model's performance

was compared using VoxNet [52], V-CNN1 [53], and TCVN on the collected dataset.

Likewise, an object classification task, the last output layer of VoxNet and V-CNN1

were modified to follow the number of objects in this dataset.

(a) Big Suitcase

(b) Office Chair

(c) Foot chair

(d) Small Suitcase

Figure 4-1 The 4 types of the 3D object after voxel grid filter.

Figure 4-2 presented the evaluation of each model during training. The key

performance to evaluate these models are based on loss and accuracy value. Therefore,

an interpretation of loss value is based on how bad the model is doing in these two sets

prediction after every epoch iteration. Hence, accuracy is a number indicating how good

58

was the model's predicted on the validation test compared to the ground-truth data.

Whereas, a key factor for measuring rank of loss value is by the lowest value, so the

model with the lowest value rating, means that the best it is. Conversely, the highest

value category is used for evaluating the rating of the model’s accuracy. As a result,

models with the highest accuracy means the better it is.

(a) Validation loss scores

(b) Validation accuracy scores

Figure 4-2 The comparison of TCVN model performances during training.

The summarized ranks of each model presented in Figure 4-2 are described

respectively. (i) Figure 4-2(a) - loss scores, it presented that loss values for all models

were decreasing during training. Therefore, the poorest performance was shown on the

VCNN1 model that achieved the lowest error value on (0.5). Next, followed by the

VoxNet model with the best (minimum) value on (0.4). Although there were

overlapping performances drawn by VoxNet and TCVN model, the proposed model

achieves the lowest loss as it goes down to (0.35). (ii) Figure 4-2(b) – accuracy scores,

the rank proof on the result drawn in the loss value graph, where the TCVN model

achieved the highest accuracy value on 90% accuracy of all validation data. Meanwhile,

the VoxNet model only produces 87% accuracy and the VCNN1 model reaches the

plateau on 86% accuracy.

Generally, the proposed TCVN model’s performance is superior in terms of both

accuracy and loss value. To clarify, the ranking results described above, a drawn

confusion matrix in Figure 4-3 shows the performance result on every model of the

validation data. Therefore, according to 1200 data that have been collected, it split into

59

33% for the validation data and 77% for the training data. In Figure 4-3, a total of 396

validation data were used to draw the confusion matrix for each model. Additionally,

the blue color information of the confusion matrix is separated into two. (i) The darker

blue color represents the correct predicted number of true positive and true negative in

the validation data. (ii) The lighter blue color shows the incorrect predicted data, which

known as a false positive and false negative. Furthermore, the TCVN model outperforms

both of the models, indicating the importance of network depth and 3D convolution

layer on the 3D data.

(a) VCNN1

(b) VoxNet

(c) TCVN

Figure 4-3 The comparison of the TCVN model in a confusion matrix of the validation data.

4.2.2. Floor Detection Result

In this subsection, the floor detection algorithm is evaluated using the original

YOLACT model and the proposed Tiny-YOLACT model on the custom floor images

dataset. Therefore, the custom dataset is consisting of 850 train and 400 test images.

Moreover, the collected train images were captured using the robot webcam. Whereas,

60

the test images were acquired from an external webcam with a side view of the

experimental floor.

The training process is conducted with a batch size of 8 on the training computer

(see Table 4-4). There were four models compared in these experiments, which are

YOLACT with ResNet-18, 34, 50, and 101 as the backbone network for each model.

Moreover, the pre-trained ResNet models on the ImageNet dataset were utilized from

the PyTorch server13. As a result, the transfer learning method from the pre-trained

weights was used to speed up the training process.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 4-4 Example results of floor detection using the Tiny-YOLACT model.

Note: (a, d, g) plywood, (b, e, h) green carpet, and (e, f, i) tile.

13 https://pytorch.org/hub/pytorch_vision_resnet/

61

With looking at Figure 4-4, the result of the proposed Tiny-YOLACT model

shows that the algorithm successful to segment the mask on each type of floor. Also, the

mask result is smoother compared to other instance segmentation models. The reason is

due to advantages of the “Proto Net” that produce temporal stability, although the model

predicts different boxes cross frames, it’s not affected the prototypes and even resulting

in a much more temporary stable mask [46].

(a)

(b)

Figure 4-5 Result of validation mAP and FPS using different ResNet backbone.

Figure 4-5(a) presented the mAP value during the training of each model on

validation data. It can be seen that every ResNet model converges with an average of

more than 25 mAP on validation data. Therefore, due to the proposed Tiny-YOLACT

model with ResNet-18 has a smaller number of parameters, the model achieves the

fastest in terms of training time. Whereas, the model achieved 34.16 mAP on the

validation data of the custom dataset within 1500 epoch.

In addition, Figure 4-5(b) shows the video processing time of all trained models.

This shows that the YOLACT model can perform real-time instance segmentation in

moderate GPU with specification similar to Table 4-5. Overall, the models were

attaining more than 10 fps. In this case, the proposed Tiny-YOLACT model also

obtained the fastest video processing times with an average of 29.56 fps.

62

4.3. Experimental Results for Robot Behavior

The performance of the proposed dragging object learning framework is

described in this section. The walking balance parameter of offset
XCoB was learned

using the ROS gazebo simulator. Then, the learned DQN algorithm will be used directly

in the real THORMANG-Wolf robot.

4.3.1. DQL-COB Training Results

The experiment scenario was on straight walking backward with foot step

parameter shown in Table 4-3 and at the same time the robot is also grasping the object.

This is illustrated in Figure 4-6, with denoted as white and red lines as the start and

finish line for the dragging distance. Hence, the large size and heavy objects are

simulated by using a 3D CAD big and heavy chair object. Moreover, the mass of an

object is unknown to the robot. Therefore, as described in the introduction, the aim of

this project is a robot learn by trial and error to drag the object (model-free RL).

(a)

(b)

(c)

(d)

(e)

Figure 4-6 Snapshot of dragging in the Gazebo simulator.

One of the challenges in the machine-learning approached is selecting the correct

hyperparameters for training the DNN. Therefore, a list of hyperparameters values used

in this DQN algorithm is shown in Table 4-6.

63

Table 4-6 List of hyperparameters and values of the DQN

Hyperparameter Value Description

episode step 2000 number of sequences of steps set.

minibatch size 64
number of training cases over which each SGD

update is computed.

replay memory size 50000

RMS optimizer updates are sampled from

experienced by the agent that is given as input to

the Q network.

target network

update frequency
100

the frequency number of parameter update (this

corresponds to parameter C from Algorithm 3)

discount factor 1
discount factor gamma used in the Q-learning

update.

learning rate 0.01 the learning rate used by the RMS optimizer.

initial exploration 0.9 initial value of in greedy − exploration.

final exploration 0.05 final value of in greedy − exploration.

(a) Reward value w/o using F/T sensor.

(b) Reward value with using F/T sensor.

Figure 4-7 Comparison of accumulated reward during training.

(a) Error distance w/o using F/T sensor.

(b) Error distance with using F/T sensor.

Figure 4-8 Comparison of Euclidean error during training.

64

Based on the proposed learning framework, two different sets of states are

compared to evaluate the efficiency learning process. Those two states are based on the

IMU pitch and roll axis, with and without using the F/T sensor. For this purpose, there

were a total of 2000 episodes executed to learn the
XCoB walk balance parameter.

Additionally, it took approximately 14 hours of training time to complete 2000 episodes

in the ROS gazebo simulator.

Figure 4-7 shows the reward at each episode according to the DQN method. The

plateau green curve means that the sub-optimal offset
XCoB with maximal reward was

acquired in around 1000 episodes. Meanwhile, Figure 4-8 shows the Euclidean error

that the robot reached the target line or not. This means the robot required to drag for a

2-meter distance to reach the finish (red line) from the start (white line). Therefore, the

summary results of these comparison draw on the proposed DQL-COB with only using

IMU sensors obtained maximum accumulated reward on 3.6 scalar value and reach

minimum error 0.4-meter. On the other hand, our proposed DQL-COB with having F/T

sensors as additional state is superior in terms of both accumulated reward and Euclidean

error value. During training, we reported the highest accumulated reward of 5.8 scalar

value and reached the best minimum error on 0.1 meter.

(a)

(b)

(c)

(d)

Figure 4-9 Snapshot during training in the Gazebo simulator.

65

Correspondingly, the graph result presented in Figure 4-7 and Figure 4-8 is re-

illustrated in Figure 4-9. Whereas, the robot is having close behavior during training

progress with and without using the F/T sensor. Therefore, to generalize the learning

process, the phases are demonstrated with four-stage in Figure 4-9. First, in episode 1

until 500, due to the high probability of exploration, the robots keep falling forward in

the starting stage. Second, during episode 500 to 750, the robot starts having prior

knowledge with shows on the robot that can drag up to half of the target distance. Then,

in the third stage (episode 750 till 1000), the robot is capable to drag until the target

distance. However, in this phase, the performance is counted as semi-successful.

Because the robot still falls in the finish line. Finally, after episode 1000 until 2000, the

robot is qualified to drag the object. As a rule of exploitation in prior knowledge, the

robot accomplishes dragging objects till the target line without falling.

 (a) Normalized IMU state (Pitch & Roll).

(b) Binarized foots state (1:on ground; 0:air)

(c) Offset value action of the Center of Body X-axis.

Figure 4-10 Recorded (states, actions) pair by the learned DQN during testing.

Based on results shown in Figure 4-7 and Figure 4-8, the proposed learning

framework outperforms having an F/T sensor along with the IMU sensor on the pitch

and roll axis on the environment state. Then, the learned DQL-COB model was tested

66

again in the Gazebo simulator. Therefore, we recorded the state and action (,)s a pair is

illustrated in Figure 4-10. The learned robot show tends to decrease the offset value

XCoB to maintain the IMU pitch on the center range. In other words, maintaining the

balanced posture of the robot also means that the algorithm successfully keeps track of

the CoM of the robot. As a result, the robot capable to drag heavy and large objects

without falling and it shown in the IMU pitch graph [see Figure 4-10(a)]. This behavior

shows the robot act identically as a normal human. Whereas, a person tends to moves

the torso backward during dragging for acquires large force.

4.3.2. DQL-COB Empirical Evaluation Result

This section implements the novel DQL-COB algorithm for the first time that

uses training results in simulation and applied to the real adult-sized THORMANG-wolf

robot for solving the MLHO problems. To evaluate the robustness of the learned DQL-

COB algorithm, those mentioned objects and surfaces shown in Table 4-1 and Table 4-2

were illustrated again in Figure 4-11 until Figure 4-13.

 (a)

(b)

(c)

(d)

 (e)

(f)

(g)

(h)

Figure 4-11 Snapshots testing on plywood surfaces.

67

(a)

(b)

(c)

(d)

 (e)

(f)

(g)

(h)

Figure 4-12 Snapshots testing on green carpet surfaces.

 (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4-13 Snapshots testing on tile surfaces.

68

 Based on the simulation, the DQL-COB algorithm model was trained on two

different sets of states. Therefore, in the evaluation test to a real robot, the tests were

conducted with 10 trial experiments on each object and each surface with and without

using the F/T sensor. As a result, the total number of tests that have done was 480 tests,

which are: 3 surfaces x 8 different object x 10 trial x 2 with and without using the F/T

sensor. Table 4-7 shows the numbers of success rate in all experimental results and the

video is available at (https://youtu.be/pGy5bJm3J_E). The details of each success rate

in Table 4-7 means that the robot accomplished the dragging with Euclidean distance

more than equal target distance without falling.

Table 4-7 Summary and comparison of the success rate result for all experiments.

Note: the term “w/o” indicating abbreviation of without.

Object
Plywood Carpet Tile

with F/T

Sensor

w/o F/T

Sensor

with F/T

Sensor

w/o F/T

Sensor

with F/T

Sensor

w/o F/T

Sensor

Default

 (No Object)
100% 100% 100% 100% 100% 100%

Office Chair 100% 100% 90% 100% 100% 90%

Office Chair

with Load
100% 100% 100% 100% 100% 70%

Foot Chair 100% 100% 100% 100% 100% 100%

Small Suitcase 100% 100% 100% 100% 100% 100%

Small Suitcase

with Load
100% 100% 100% 90% 90% 60%

Big Suitcase 100% 100% 100% 100% 100% 100%

Big Suitcase

with Human
90% 0% 0% 0% 60% 0%

As shown in Figure 4-14, the success rate of dragging all objects for the entire

experiment was having a slight difference in the performances. Therefore, the total

percentage of success rate using the learned robot with having the F/T sensor is 92.91%.

Comparatively, the robot successful rate without using the F/T sensor is 83.75%.

Therefore, to analyze the difference between the learned robot on two different sets of

states, the recorded (,)s a pairs are compared.

69

Figure 4-14 The success rate of dragging all objects per each surface.

Additionally, the evaluation number of footsteps are kept in the same with the

simulation. This means that the target distance for straight backward walking is still

same 2 meters. Although with the absence of the F/T sensor, the robot still could drag

most of the experimental objects. This shows in Figure 4-15, the captured (,)s a pairs

during dragging a small suitcase with the load as the evaluation sample.

(a) IMU States (b) Offset XCOB

(c) Trajectory and Euclidean distance during dragging

Figure 4-15 Recorded (states, actions) pair without using the F/T sensor.

98.75
87.5 86.25 86.25

93.75

77.5

0

20

40

60

80

100

with F/T

Sensor

w/o F/T

Sensor

with F/T

Sensor

w/o F/T

Sensor

with F/T

Sensor

w/o F/T

Sensor

Plywood Carpet Tile

S
u

ce
ss

 R
a
te

Floor Types

70

Generally, an example result of the captured behaviors of (,)s a pairs on the

proposed DQL-COB algorithm without using the F/T sensor in Figure 4-15 shows a

general trend for dragging other types of objects. The actions taken by the robot appear

to be sluggish or insensitive toward the dynamic of states. For this reason, the

shortcoming was on dragging the massive objects (big suitcase with a human), that robot

fails to drag it.

On the contrary, the performance of the learned agent with having the F/T sensor

is more robust. This proves on the robot that capable to drag a big suitcase (18.6kg) with

an adult human (66kg) seated on top of it. The proposed learning framework shows the

capability of a THORMANG-Wolf robot to drag an object with a load 84.6kg (double

of its weight). As shown in Figure 4-16, the recorded (,)s a pairs of the robot using the

F/T sensors during dragging a massive object. This is showing the benefit of using F/T

sensors as the additional features to the DQL-COB algorithm, that the actions taken by

the robot are more stable.

As a result, the experiments result clearly show that the proposed hierarchical

method for dragging objects which implemented based on deep neural networks can

recognize and perform superior results with a very high success rate. Although the state

of sensor values of real robots is slightly different from simulation, it allows having

better generalization for unknown states. For this reason, the proposed DQL-COB

algorithm can generalize more features based on experience environment and action.

(a) IMU States

(b) Foot States

71

(c) Offset XCOB

(d) Trajectory and Euclidean distance during

dragging

Figure 4-16 Recorded (states, actions) pair using the F/T sensor.

To answer, the failure condition in Table 4-7, the analysis of sample conditions

is illustrated in Figure 4-17 and Figure 4-18. Therefore, as illustrated in Figure 4-17, the

robot was failed to drag an empty small suitcase at the finish line. The main reason is

the behavior of the fluctuating offset
XCoB . However, this problem only happened on

the learned agent without using the F/T sensors.

(a)

(b)

Figure 4-17 Example of a failure condition in dragging an empty small suitcase.

One other thing of the highest failure rate is shows on dragging a big suitcase

with a human on a green carpet surface. Wherefore, the initial value of XCoB parameter

of the robot is -0.015. This means the robot has a straight torso posture before dragging

the object [see Figure 3-20(b)]. Also, the green carpet surface has a smaller coefficient

of friction. As a result, the robot has a high probability to fall forward in beginning for

dragging a high load object.

72

(a)

(b)

Figure 4-18 Example of a failure condition in dragging a big suitcase with a human.

For all these reasons, we conduct another experiment with a pre-defined initial offset

of -0.08
XCoB . Wherefore, the designated initial offset implies the robot postures with

an initial pose that slightly backward. Then, we applied the proposed DQL-COB by

using the F/T sensor. As a result, the robot could successfully drag an object and tackle

the failure condition described in Figure 4-18. Moreover, the recorded (,)s a pairs of this

experiment illustrated in Figure 4-19.

(a)

(b)

Figure 4-19 The pre-defined CoB-X to dragging a big suitcase with a human.

73

Chapter 5: Closing

5.1. Conclusion

In this thesis, presented a hierarchical deep learning method in which we used

adult-sized biped humanoid robot THORMANG-Wolf to drag large size and heavy

object. The main objective of the proposed method was to drag different objects on

various flat surfaces through the learning-based method. The validation of this

experiment was tested to drags several common objects and surfaces available in human

daily life. To sum up, the learning-based approached in this MLHO problem, it can be

divided into three different learning system.

First, for object detection, the approach was done using a deep learning method

on 3D object classification. The 3D data were acquired using a point cloud from the

robot’s LiDAR scanner. A pre-process Euclidean distance-based filter and voxelization

algorithm to down-sample the point cloud data into a fixed size 30×30×30 volumetric

occupancy grid. In brief, the proposed TCVN model that based VoxNet [52] and V-

CNN1 [53] achieved a 90% accuracy in real-time.

 Second, for the floor detection, the approach was done using a deep learning

method on real-time instance segmentation. We proposed a model based on the original

YOLACT model [46] that is modified on the backbone network using the ResNet-18

and called this customized model as Tiny-YOLACT. For the training process, a custom

dataset (floor images) was acquired from the robot’s webcam with a COCO format. This

custom model achieved a 34.16 mAP on validation data with an average of 29.56 fps on

standard NVIDIA GTX-1060 GPU.

Third, for the deep reinforcement learning method, it was done using the Deep

Q-Learning method to produce the offset parameter
XCoB during dragging. We

proposed a DQL-COB algorithm with the environment and the training process was

done in the ROS-Gazebo simulator. It took approximately 20 hours of training time on

a single deep-learning computer (see Table 4-4) to complete 2000 episodes for the robot

74

to learned and solved the MLHO problem. In the experiments, the learned agent from

the simulator was directly tested to a real robot with a success rate percentage of 92.91%

using the F/T sensor and 83.75% without using F/T sensors.

 Overall, the sequence of those multi learning-based approached was done

sequentially. Briefly, a robot scan objects with LiDAR and utilized the TCVN model to

access the pre-recorded motion on grasping an object. Afterward, the floor detection

result from Tiny-YOLACT was used to select a coefficient offset value on offsetting

XCoB . Whereas, the DQL-COB algorithm acted as
XCoB an offset manager based on

the IMU and F/T sensors. As a result, the offset
XCoB is implemented to keep tracking

with the robot’s center of mass, that robot can keep balance with maintaining the ZMP

in support polygon.

5.2. Future Work

In future work, the plan is removing instance segmentation of floor detection part

with extending to a deep reinforcement learning algorithm that adding a raw image from

the robot camera as an additional state. Therefore, the agent can differentiate the offset

value
XCoB based on types of surfaces directly and act more robustly. Also,

implementing the dynamic inverse kinematic grasping point technique based on LiDAR

point cloud data should be further studied. On the whole, broaden the dragging large

and heavy object into pulling and pushing large and heavy objects as well.

75

Bibliographies

[1] K. Tanie, "Humanoid robot and its application possibility," in Proceedings of

IEEE International Conference on Multisensor Fusion and Integration for

Intelligent Systems, MFI2003., 2003, pp. 213-214.

[2] A. Choudhury, H. Li, C. Greene, and S. Perumalla, "Humanoid Robot-

Application and Influence," arXiv preprint arXiv:1812.06090, 2018.

[3] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to humanoid

robotics. Springer, 2014.

[4] T. Takubo, K. Inoue, and T. Arai, "Pushing an Object Considering the Hand

Reflect Forces by Humanoid Robot in Dynamic Walking," in Proceedings of the

2005 IEEE International Conference on Robotics and Automation, Barcelona,

Spain, Spain, 2005, pp. 1706-1711.

[5] N. Motoi, M. Ikebe, and K. Ohnishi, "Real-Time Gait Planning for Pushing

Motion of Humanoid Robot," IEEE Transactions on Industrial Informatics, vol.

3, no. 2, pp. 154-163, 2007.

[6] D. Omrčen, C. Böge, T. Asfour, A. Ude, and R. Dillmann, "Autonomous

acquisition of pushing actions to support object grasping with a humanoid robot,"

in 2009 9th IEEE-RAS International Conference on Humanoid Robots, 2009, pp.

277-283.

[7] S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba, "Controlling the planar motion

of a heavy object by pushing with a humanoid robot using dual-arm force

control," in 2012 IEEE International Conference on Robotics and Automation,

2012, pp. 1428-1435.

[8] M. Murooka, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba, "Whole-body

pushing manipulation with contact posture planning of large and heavy object for

humanoid robot," in 2015 IEEE International Conference on Robotics and

Automation (ICRA), 2015, pp. 5682-5689.

[9] K. Harada et al., "A Humanoid Robot Carrying a Heavy Object," in Proceedings

of the 2005 IEEE International Conference on Robotics and Automation,

Barcelona, Spain, Spains, 2005, pp. 1712-1717.

[10] J. C. Vaz, H. Lee, Y. Jun, and P. Oh, "Towards tasking humanoids for lift-and-

carry non-rigid material," in 2017 14th International Conference on Ubiquitous

Robots and Ambient Intelligence (URAI), 2017, pp. 316-321.

[11] Y. Ohmura and Y. Kuniyoshi, "Humanoid robot which can lift a 30kg box by

whole body contact and tactile feedback," in 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, San Diego, CA, USA, 2007, pp.

1136-1141.

[12] A. Laurenzi, D. Kanoulas, E. M. Hoffman, L. Muratore, and N. G. Tsagarakis,

"Whole-Body Stabilization for Visual-Based Box Lifting with the COMAN+

Robot," in 2019 Third IEEE International Conference on Robotic Computing

(IRC), Naples, Italy, Italy, 2019, pp. 445-446.

[13] M. De Looze, K. Van Greuningen, J. Rebel, I. Kingma, and P. Kuijer, "Force

direction and physical load in dynamic pushing and pulling," Ergonomics, vol.

43, no. 3, pp. 377-390, 2000.

76

[14] A. Argubi-Wollesen, B. Wollesen, M. Leitner, and K. Mattes, "Human body

mechanics of pushing and pulling: analyzing the factors of task-related strain on

the musculoskeletal system," Safety and health at work, vol. 8, no. 1, pp. 11-18,

2017.

[15] D. Torricelli et al., "Human-like compliant locomotion: state of the art of robotic

implementations," Bioinspiration & biomimetics, vol. 11, no. 5, p. 051002, 2016.

[16] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, "Dynamics and balance of a

humanoid robot during manipulation tasks," IEEE Transactions on Robotics, vol.

22, no. 3, pp. 568-575, 2006.

[17] J. Yang, S. Ogawa, T. Tsujita, S. Komizunai, and A. Konno, "Massive object

transportation by a humanoid robot," IFAC-PapersOnLine, vol. 51, no. 22, pp.

250-255, 2018.

[18] F. Abi-Farraj, B. Henze, C. Ott, P. R. Giordano, and M. A. Roa, "Torque-Based

Balancing for a Humanoid Robot Performing High-Force Interaction Tasks,"

IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2023-2030, 2019.

[19] E. Yoshida, P. Blazevic, V. Hugel, K. Yokoi, and K. Harada, "Pivoting a large

object: whole-body manipulation by a humanoid robot," Applied Bionics and

Biomechanics, vol. 3, no. 3, pp. 227-235, 2006.

[20] E. Yoshida et al., "Motion planning for whole body tasks by humanoid robot," in

IEEE International Conference Mechatronics and Automation, 2005, Niagara

Falls, Ont., Canada, 2005, vol. 4, pp. 1784-1789: IEEE.

[21] M. Stilman, K. Nishiwaki, and S. Kagami, "Humanoid teleoperation for whole

body manipulation," in 2008 IEEE International Conference on Robotics and

Automation, Pasadena, CA, USA, 2008, pp. 3175-3180: IEEE.

[22] M. Stilman, K. Nishiwaki, and S. Kagami, "Learning object models for whole

body manipulation," in 2007 7th IEEE-RAS International Conference on

Humanoid Robots, 2007, pp. 174-179.

[23] E. Berger, "Friction modeling for dynamic system simulation," Applied

Mechanics Reviews, vol. 55, no. 6, pp. 535-577, 2002.

[24] J. Woodhouse, T. Putelat, and A. McKay, "Are there reliable constitutive laws

for dynamic friction?," Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, vol. 373, no. 2051, p.

20140401, 2015.

[25] S. Kim, S. Hong, and D. Kim, "A walking motion imitation framework of a

humanoid robot by human walking recognition from IMU motion data," in 2009

9th IEEE-RAS International Conference on Humanoid Robots, 2009, pp. 343-

348.

[26] B. Hengst, M. Lange, and B. White, "Learning ankle-tilt and foot-placement

control for flat-footed bipedal balancing and walking," in 2011 11th IEEE-RAS

International Conference on Humanoid Robots, 2011, pp. 288-293.

[27] J. Lin, K. Hwang, W. Jiang, and Y. Chen, "Gait Balance and Acceleration of a

Biped Robot Based on Q-Learning," IEEE Access, vol. 4, pp. 2439-2449, 2016.

[28] W. Wu and L. Gao, "Posture self-stabilizer of a biped robot based on training

platform and reinforcement learning," Robotics and Autonomous Systems, vol.

98, pp. 42-55, 2017.

77

[29] K. Hwang, W. Jiang, Y. Chen, and H. Shi, "Motion Segmentation and Balancing

for a Biped Robot's Imitation Learning," IEEE Transactions on Industrial

Informatics, vol. 13, no. 3, pp. 1099-1108, 2017.

[30] X. Wu, S. Liu, T. Zhang, L. Yang, Y. Li, and T. Wang, "Motion Control for

Biped Robot via DDPG-based Deep Reinforcement Learning," in 2018 WRC

Symposium on Advanced Robotics and Automation (WRC SARA), 2018, pp. 40-

45.

[31] C.-C. Wong, C.-C. Liu, S.-R. Xiao, H.-Y. Yang, and M.-C. Lau, "Q-Learning of

Straightforward Gait Pattern for Humanoid Robot Based on Automatic Training

Platform," Electronics, vol. 8, no. 6, p. 615, 2019.

[32] M. Nakada, B. Allen, S. Morishima, and D. Terzopoulos, "Learning Arm Motion

Strategies for Balance Recovery of Humanoid Robots," in 2010 International

Conference on Emerging Security Technologies, 2010, pp. 165-170.

[33] S. Yi, B. Zhang, D. Hong, and D. D. Lee, "Online learning of a full body push

recovery controller for omnidirectional walking," in 2011 11th IEEE-RAS

International Conference on Humanoid Robots, 2011, pp. 1-6.

[34] D. Luo, X. Han, Y. Ding, Y. Ma, Z. Liu, and X. Wu, "Learning push recovery

for a bipedal humanoid robot with Dynamical Movement Primitives," in 2015

IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids),

2015, pp. 1013-1019.

[35] P. Mendez-Monroy, "Walking motion generation and neuro-fuzzy control with

push recovery for humanoid robot," Int. J. Comput. Commun., vol. 12, no. 3, pp.

330-346, 2017.

[36] H. Kim, D. Seo, and D. Kim, "Push Recovery Control for Humanoid Robot Using

Reinforcement Learning," in 2019 Third IEEE International Conference on

Robotic Computing (IRC), 2019, pp. 488-492.

[37] P. Beeson and B. Ames, "TRAC-IK: An open-source library for improved

solving of generic inverse kinematics," in 2015 IEEE-RAS 15th International

Conference on Humanoid Robots (Humanoids), 2015, pp. 928-935.

[38] J.-Y. Kim, I.-W. Park, and J.-H. Oh, "Walking Control Algorithm of Biped

Humanoid Robot on Uneven and Inclined Floor," Journal of Intelligent and

Robotic Systems, vol. 48, no. 4, pp. 457-484, 2007/04/01 2007.

[39] M. Vukobratović and B. Borovac, "Zero-moment point—thirty five years of its

life," International journal of humanoid robotics, vol. 1, no. 01, pp. 157-173,

2004.

[40] J. Darrell, J. Long, and E. Shelhamer, "Fully Convolutional Networks for

Semantic Segmentation," IEEE T PATTERN ANAL, vol. 39, no. 4, 2014.

[41] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object

detection with region proposal networks," in Advances in neural information

processing systems, 2015, pp. 91-99.

[42] W. Liu et al., "Ssd: Single shot multibox detector," in European conference on

computer vision, 2016, pp. 21-37: Springer.

[43] J. Redmon and A. Farhadi, "Yolov3: An incremental improvement," arXiv

preprint arXiv:1804.02767, 2018.

[44] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask R-CNN," in 2017 IEEE

International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988.

78

[45] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, "Fully Convolutional Instance-Aware

Semantic Segmentation," in 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017, pp. 4438-4446.

[46] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, "YOLACT: Real-Time Instance

Segmentation," in 2019 IEEE/CVF International Conference on Computer

Vision (ICCV), 2019, pp. 9156-9165.

[47] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "Pointnet: Deep learning on point sets

for 3d classification and segmentation," in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2017, pp. 652-660.

[48] C. J. C. H. Watkins and P. Dayan, "Q-learning," Machine Learning, vol. 8, no. 3,

pp. 279-292, 1992/05/01 1992.

[49] V. Mnih et al., "Human-level control through deep reinforcement learning,"

Nature, vol. 518, no. 7540, p. 529, 2015.

[50] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, "Resource management with

deep reinforcement learning," in Proceedings of the 15th ACM Workshop on Hot

Topics in Networks, 2016, pp. 50-56.

[51] ROBOTIS Inc. (December 19). THORMANG3 Full size open platform humanoid.

Available: http://en.robotis.com/model/page.php?co_id=prd_thormang3#

[52] D. Maturana and S. Scherer, "Voxnet: A 3d convolutional neural network for

real-time object recognition," in 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, pp. 922-928:

IEEE.

[53] V. Hegde and R. Zadeh, "Fusionnet: 3d object classification using multiple data

representations," arXiv preprint arXiv:1607.05695, 2016.

[54] X.-F. Han, J. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao, "A review of

algorithms for filtering the 3D point cloud," Signal Processing: Image

Communication, vol. 57, 05/01 2017.

[55] B. Chakraborty, B. Shaw, J. Aich, U. Bhattacharya, and S. K. Parui, "Does

Deeper Network Lead to Better Accuracy: A Case Study on Handwritten

Devanagari Characters," in 2018 13th IAPR International Workshop on

Document Analysis Systems (DAS), 2018, pp. 411-416.

[56] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image

recognition. CoRR abs/1512.03385 (2015)," ed, 2015.

[57] M. Vukobratovic and B. Borovac, "Zero-Moment Point - Thirty Five Years of its

Life," I. J. Humanoid Robotics, vol. 1, pp. 157-173, 03/01 2004.

[58] S. Kajita et al., Biped walking pattern generation by using preview control of

zero-moment point. 2003, pp. 1620-1626 vol.2.

http://en.robotis.com/model/page.php?co_id=prd_thormang3

79

Autobiography

Hanjaya Mandala received his B. App. Sc degree in Mechatronic Engineering

Study Program of Electrical Engineering from Polytechnic State Batam, Indonesia in

August 2017. After graduation, he has worked for one year at Epson company as an

electrical designer in the factory automation department. He is in charge of designing

electrical and programming automation machines. Then in August 2018, he continues

his Master's Degree in the Electrical Engineering Department at the National Taiwan

Normal University and joined the Educational Robotics Centre laboratory which

focused on humanoid robots. He has been worked on the humanoid kid-size robots since

2014 and has obtained 3rd places at RoboCup 2018 kid-size humanoid robot

competitions. Also, three-rows of 1st place at Indonesia National Humanoid Robot

Competitions. His research interest includes robotics, computer vision, and artificial

intelligence.

80

Academic Achievement

1. H. Mandala, S. Saeedvand, and J. Baltes, "Synchronous Dual-Arm Manipulation by

Adult-Sized Humanoid Robot," in 2020 International Conference on Advanced

Robotics and Intelligent Systems (ARIS), (accepted)

2. IEEE/RSJ IROS 2019 (Macau) - 1st Place Humanoid Robot Application Challenge.

3. Iran FIRA RoboWorldCup Open 2019 (Iran) - 1st Place all-round HuroCup Kid-size

Humanoid.

4. International Intelligent RoboSports Competition 2020 (Taiwan) - 1st Place

HuroCup Kid-size Humanoid Sprint & Marathon.

