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ABSTRACT 

 

 

Humanoid robots are designed and expected to work alongside a human. In our 

daily life, Moving Large Size and Heavy Objects (MLHO) can be considered as a 

problem that is a common activity and dangerous to humans. In this thesis, we propose 

a novel hierarchical learning-based algorithm, which we use dragging to transport an 

object on an adult-sized humanoid robot. The proposed method proves robustness on a 

THORMANG-Wolf adult-sized humanoid robot, that manages to drag a massive object 

with a mass of double of its weight (84.6 kg) for 2 meters. Therefore, the algorithms 

consist of three hierarchical deep learning-based algorithms to solve the MLHO problem 

and distributed in terms of robot vision and behavior control. Based on this insight, in 

the robot vision control, first, we propose deep learning algorithms to 3D object 

classification and surface detection. 

 

For 3D object classification, we propose a Three-layers Convolution Volumetric 

Network (TCVN). Input data of the TCVN model used a voxel grid representation from 

point clouds data acquired from the robot’s LiDAR scanner. On the other hand, for 

surface detection, we propose a lightweight real-time instance segmentation called Tiny-

YOLACT (You Only Look at Coefficients) to segment the floor from the robot’s camera. 

Tiny-YOLACT model is adopted from the YOLACT model and utilized ResNet-18 
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model as the backbone network. Furthermore, for robot behavior control, as the main 

part of this thesis we address solving MLHO problem by an adult-sized humanoid robot 

using the deep reinforcement learning algorithm for the first time. At this part, we 

proposed a Deep Q-Learning algorithm to train a deep model for control policy in 

offsetting the Centre of Body (CoB) of the robot when dragging different objects named 

(DQL-COB). For this purpose, the offset CoB is implemented to keep tracking with the 

robot’s center of mass. As a result, the robot can keep balance with maintaining the ZMP 

in the support polygon. DQL-COB algorithm was first trained on the ROS Gazebo 

simulator to avoid costly experiments in terms of time and real environment constraints, 

then it was adopted with a real robot on three different types of surfaces.  

 

To evaluate the stability of the THORMANG-Wolf robot with the proposed 

methods, we evaluated two types of experiments on three types of surfaces with eight 

different objects. In these experiments, in one scenario we use IMU along with foot 

Pressure (F/T) sensor, in the second scenario we just use IMU data as learning algorithm 

input. In the experiments, the success rates of applying the DQL-COB algorithm on the 

real robot are 92.91% with using the F/T sensor and 83.75% without using F/T sensors. 

Moreover, the TCVN model on 3D object classifications achieved a 90% accuracy in 

real-time. Correspondingly, the Tiny-YOLACT model achieved a 34.16 mAP on 

validation data with an average of 29.56 fps on a single NVIDIA GTX-1060 GPU. 

 

Keywords: humanoid robot, deep reinforcement learning, dragging object, deep learning.  
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Chapter 1: Introduction 

 

 

1.1. Background 

Humanoid robots have become important types of robots that researchers develop 

and improve them rapidly. In [1], a description of the possible application using a 

humanoid robot in real-life is provided. In [2], the authors review over last decade's 

application and influence of humanoid robots in the social, healthcare, and education 

domains. Recently, in (2019), the humanoid robot applications in a real-world scenario 

were chosen as the special topic issues in IEEE Robotics and Automation Magazine 

(RAM)1. Therefore, the development of humanoid robots offers significant potential in 

alleviating tedious and tough tasks that currently performed by humans. 

 

The important question with developing a humanoid robot is “Why humanoid 

robot? Why not the other types of robots?”. The answer can be indicated as the functions 

of the humanoid robots itself. Three main fundamental functions of a humanoid robot 

are evaluated on [3]: (i) Humanoid robots are able to work in the human environment, 

(ii) Humanoid robots are capable to use humans tools, (iii) Humanoid robots are 

designed structurally similar to a human shape.  As mentioned, a humanoid robot is 

designed to be similar to mankind. It should mimic a human from different aspects such 

as interaction, perception, locomotion, manipulation, and behavior. 

 

Generally, humanoid robots were expected to work alongside humans, or as an 

alternative to humans in any circumstances. For example, in heavy-duty work such as 

civil engineering and hazardous environments construction, Moving Large and Heavy 

Objects (MLHO) is required. Moreover, in rescue applications, during the evacuation 

process, it is necessary to remove the large size of debris. Though biped humanoid 

robots have high mobility like humans, walking with moving objects has a possibility 

robot may fall, due to relatively disturbance in the Centre of Mass (COM) with suffering 

 
1 https://www.ieee-ras.org/publications/ram/special-issues/humanoid-robot-applications-in-real-world-scenarios 
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serious damage. So far, many humanoid robot development projects with a focus on the 

MLHO was still a challenging problem [4-12]. These challenges can be summarized 

into how to develop a stable walking gait on a biped robot while the robot is dragging a 

large size object. Admittedly, the dragging problem is more challenging than carrying 

because there are more uncertainties of surface friction which duplicates the complexity 

of the problem. 

 

 

1.2. Problem statement 

Biped walking humanoid robots may not be stable due to different real-time 

environment conditions even the desired walking pattern has planned to realize stable 

walking on the flat floor. However, in the MLHO problem, it is assumed that some 

objects are too heavy to lift or its shape or size is very hard to carry for a humanoid robot 

with limited joint torque. Therefore, to deal with this problem, we considered the 

humanoid robot to pull the object. For this reason, we used the pull motion and then 

specifically called dragging. This is significant although drag and pulls motion have a 

similar meaning, however, term dragging is more specific than pull.  

  

The important question in this MLHO motion type, “Why we choose dragging 

the object rather than pushing the object?”. The answer is illustrated in Figure 1-1, 

MLHO with dragging motion has more benefit than pushing an object, which is the main 

target in this thesis is based on that. A study about comparison force on the push and 

pull an object in flat horizontal surface provided by [13, 14].  

 

Based on Figure 1-1, it shows that there is a difference in friction and forces 

toward the object between those two tasks. The push motion as shown in Figure 1-1(a), 

shows the vertical component of the pushing force acts on the object in the vertically 

downward direction. Therefore, it increases the effective weight of the object and it’s 

mathematically written in Eq (1-1). Whereas, it also affects the friction force between 

object and ground. The effective weight W  of the object on pushing motion as follow: 
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 sinW m g F =  +  (1-1) 

 

Where m  is a mass of the object, g is the gravity, F is the pushing force, and   

is elevation angle of the force given to the object.  

 

On the other hand, the pulling motion shows the reverse way of the vertical force 

component acts on the object is in a vertically upward direction. Thus, it reduces the 

effective weight of the object proof on Eq (1-2) and it also decreases friction between 

the object and the ground. The effective weight W of the object on pulling motion as 

follow: 

 

 sinW m g F =  −  (1-2) 

 

Based on these two equations, dragging an object on the horizontal plane is easier than 

pushing. Note that, although pushing the object can be beneficial in different conditions 

for a humanoid robot, but it is not the objective in this research study.  

 

 

        (a) Pushing object.                                                  (b) Dragging object. 

Figure 1-1 Comparison motion pose on the moving object. 
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1.3. The objective of the study 

In this work, we present an adult-sized bipedal humanoid robot that is capable of 

moving a large and heavy object. The objectives of this project are divided into two 

parts. First, proposing a robot vision algorithm on 3D object detection and 2D object 

instance segmentation, that uses a deep-learning algorithm approached. Furthermore, in 

3D object detection, the object will be acquired using a real-time LiDAR scanner on the 

robot's head to get the 3D data. On the other hand, the 2D instance segmentation will be 

expected running in real-time and used for floor detection from the robot’s webcam. 

Second, proposing a deep reinforcement learning algorithm specifically on the Deep Q-

Learning algorithm to improve the robot’s behavior on whole-body manipulation to 

transporting large size and heavy objects. Therefore, in the training process, we used a 

simulated robot model and environment on Gazebo2. The advantage of using a gazebo 

simulator that it can simulate very close to the real environment. As a result, the training 

resulted can be directly applied to the real robot without any parameter adjustment. This 

thesis discusses a way of MLHO by a bipedal adult-sized humanoid robot, in which the 

robot drags different objects including a massive object on various flat surfaces, and 

walks in a backward direction.  

 

The rest of the thesis is organized as follows. In chapter 2 an overview of the 

literature review on moving objects using bipedal humanoid robots presented. Chapter 

3 explains the methodology of the algorithms to solve MLHO problem, in which the 

architecture of THORMANG-Wolf robot, vision on the proposed deep learning 3D 

object classification and floor detection, the bipedal humanoid robot walking control, 

and the proposed deep reinforcement learning method are presented. Chapter 4 provides 

the experimental result of the 3D object classification and the proposed method of Deep 

Q-Network (DQN) on the THORMANG-Wolf robot. Finally, chapter 5 concludes the 

thesis and shows future work. 

 

 

 
2 http://gazebosim.org/ 
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1.4. Limitation of the study 

There are four major limitations in this research that could be addressed in future 

research. First, the research focused on robot vision processing that is based on a deep 

learning approach. Also, it divided into 3D voxel object classification from LiDAR point 

cloud data and real-time instances segmentation for floor detection. The second 

limitation concern of robot manipulation control, it only used static grasp motion for 

grasping the object. Third, on the robot walking control, it used the original ZMP 

walking controller provided from ROBOTIS on the THORMANG3 robot. Finally, in 

robot behavior control, it specifically uses the deep reinforcement learning on the DQN 

algorithm to learn the control policy of the Centre of Body (CoB) parameter. 
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Chapter 2: Literature Review 

 

 

2.1. Related work 

Balancing in Bipedal Humanoid Robot (BHR) systems is a challenging research 

problem and has been used to address a variety of issues. Hence, there are many the 

state-of-the-art stabilize walking in biped robot has been extensively studied [15], but 

walking with disturbance such as pushing [4-8], carrying [9, 10], or lifting [10-12] large 

or heavy objects are still an open problem. Therefore, maintain the balance of humanoid 

robots when transporting objects can be one of the critical problems to be investigated 

by adult-sized BHR. The following literature review confirms that MLHO presents a 

problem that goes beyond mere balancing, discusses specific and produced solutions, 

and concludes that specific approaches and robust initiatives are required for real 

widespread implementation of BHR in the real world. 

 

In the rest of this section, the literature reviews of related works on the MLHO 

problems are discussed in several sub-section. As a rule, each sub-section is a group of 

related work in a more specific field and described briefly as follows. (i) Pushing the 

object, the most common method for transporting large objects. (ii) Pivoting object, an 

alternative motion for precise movement on moving large objects. (iii) Teleoperation 

manipulation, manual control of the whole-body humanoid robot to move large-size 

objects. Then, the humanoid robot control using a learning-based approached on (iv) 

walking control and (v) push recovery control. 

 

2.1.1. Pushing object 

In [4], the authors studied pushing a heavy object by humanoid robot considering 

the reflect force acted in the end-effectors (both hands). The reaction reflects force 

aimed at the single support phase of walking. They proposed Dynamically 

Complemental Zero Moment Point (DCZMP) considering the dynamical modification 

position of the COM. The COM trajectory of the HRP-2 humanoid robot is modified 
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based on the forces acting on the robot's hands. These findings were replicated by [16], 

in which the authors proposed GZMP (Generalized Zero-Moment Point) that enables 

stability when the robot hands are in contact with objects. They use contact force without 

grasping to take advantage of keeping robot balance during a disturbance. The author 

used an HRP-2 humanoid robot in a simulation environment to push an object and 

proposed GZMP which enables stability when the robot hands are in contact with objects. 

However, these solutions were tested on large object but not with heavy weight. 

  

In [7], the authors utilized dual-arm force control on a humanoid robot to push a 

heavy wheelchair. They used a zero-moment-point (ZMP) offset approached, to 

maintain the balance of the robot. This rectification allows the humanoid robot to 

dynamically stabilize against the reaction forces. In this method, a real HRP-2 humanoid 

robot able to push a wheelchair with weight up to 90kg without slipping. Therefore, the 

importance of friction forces was captured by an expensive force sensor on the robot 

arms. However, their maintenance is difficult and not all humanoid robot has a force 

sensor on the arms. Moreover, force contact of a robot can be achieved from the 

measurement of joint torque without using an additional force sensor. Similarly, by [9], 

the authors investigated whole-body pushing motion by humanoid robot considering 

force and balance on different contact points. They used a humanoid robot for pushing 

heavy objects on the sensor-less region; using both hands, forearm, or the hip. In this 

research, authors manually generate the posture of a robot try to push unknown mass 

and COG of the object. A stable pushing force equation from the feet force sensor and 

external force was utilized for the closed-loop feedback. In this way, the HRP-2 

humanoid robot able to push a non-wheeled heavy object. They achieved the highest 

force from the robot by pushing backward with hip contact. However, the large external 

reaction force (slip) which was caused by the transported object was not discussed in 

this study. 

 

 In [17], the authors provided a solution for the large reaction of external forces 

(slip) generated on the feet and hands-on pushing a heavy object. In this study, an 

optimizer named quadratic programming (QP) was utilized to optimize the joint torques 
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for predicting the maximum value of external force. Furthermore, this research 

determined the problem as a free-floating model humanoid robot simulated using the 

OpenHRP simulator. They used virtual mass (VM) as an alternative for the high 

computational cost to calculate inequality friction constraint. VM was attached to the 

end of limbs to estimate contact force between the free-floating model robot and object. 

Anyway, this work presented in the simulation environment wherein a practical scenario, 

a QP solver cannot directly deal with the joint torque limitation, because the design 

variable here is the joint acceleration. In [18], the authors evaluated torque-based 

balancing to perform a high-force interaction task. Instead of controlling the COM, the 

proposed controller straight acquires information from the gravity-inertial wrench cone 

(GIWC) to ensures the practicability of the balancing forces. They tested on TORO 

humanoid robot with force up to 250N (≈ 1/3 of the robot’s weight) able to push the 

table weighing 50 kg. However, one limitation with this approached that not all 

humanoid robots support torque control.  

 

2.1.2. Pivoting object 

 Most previous studies on pushing manipulation show the range of pushing force 

is wide in hands pushing because the robot is easy to change COG for many joints 

between contact points and feet. Also, pushing the heavy and large objects in a plane 

requires generating large force to compensate for the ground-object friction force. This 

is a challenge because reaction forces from a heavy object can easily cause foot slippage 

or lose balance and fall. For this reason, pushing large and heavy objects may not 

perform well on some problems. In [19, 20], the authors validated pivoting motion as an 

alternative motion for pushing a large object. The robot performed whole-body 

manipulation of a large object by forward pivoting. Thus, this research maintains the 

whole-body balance using resolved momentum control (RMC) [6]. RMC was adopted 

for stepping motion keeping both hands in contact with the object. They tested the result 

on pivoting heavy objects in both simulation and real robot HRP-2 with displacement in 

x-direction was around 0.06[m]. The proposed motion had a good performance where 

there is no slipping occurs during transporting objects. However, pivoting motion took 
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more time to accomplished moving objects with some distances, as it slowly moves an 

object through a sequence of pivoting motion to the right and left. 

 

2.1.3. Teleoperation manipulation 

 Manipulation poses on transportation large and heavy objects, generally were 

generated manually by human assistance [8]; this finding shows the time completion to 

finds the perfect configuration is time-consuming. In [21], the authors solve this problem 

by using teleoperation control for controlling the HRP-2 humanoid robot through a 

joystick. Meanwhile, the self-balance of the robot learned from the dynamic friction 

model of the manipulated objects. They showed the robot able to turn, rotate, and push 

a table with a caster. Anyway, this research required to identified dynamic friction 

models [22] on every initial interaction with the new load, where solving dynamic 

friction modeling on a variety object is still a difficult task [23, 24].  

 

On the other hand, another solution proposed by walking imitation of humanoid 

robot toward human walking recognition provided by [25]. The motion capture system 

was acquired by using 16 inertial measurement unit (IMU) sensors, placed on the 

human`s head, torso, and each limb. They achieved motion recognition successfully 

imitated by the humanoid robot on stance and movement direction with a time delay of 

2.5 sec which is very slow. Based on this literature, considering stream a single IMU 

sensor requires a high-frequency process, it can be concluded that multi IMUs based 

approaches require a high computational cost for acquiring real-time data.  In this regard, 

both of these approached did not take advantage of any learning algorithm. 

 

2.1.4. Walking Balance (Learning-Based) 

Machine learning (ML) algorithm push the technology nowadays by presenting 

an artificial intelligence of computer performs a specific task without using explicit 

instructions. On the humanoid robots, the Reinforcement Learning algorithm 

empowered robot intelligence through reward and punishment from a set of actions 

taken by the robot. The result was tremendously changed most current research towards 

this approach. In general, there was no learning-based algorithm has reported for adult-
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sized humanoid robots to perform transportation on a large object. So then, the problem 

of maintaining stability during walking and stance against disturbance, with the problem 

of transporting large and heavy objects on the humanoid robot are equal. In the following 

literature, prior work related to RL-based application on BHR that related to this paper 

will be described respectively. 

 

In [26], the authors designed an RL walking balancing policy, which learns the 

ankle joint position of the stance leg and determines the swing foot placement during 

walking. In [27], the authors used Q-Learning to control dynamic walking gait balance 

and acceleration of biped robot without prior knowledge of the environment. In [28], the 

authors proposed posture self-stabilizer of a biped robot under exerts amplitude-limited 

random disturbances using a hierarchical stabilizer based on RL. In [29], the authors 

aimed a posture-based imitation with balance learning, to allow humanoid robots to 

imitate demonstrated motions using Q-Learning for the balance learning algorithm. In 

[30], the authors realized the Deep Deterministic Policy Gradient (DDPG)-based deep 

reinforcement learning to control the fall over of biped robot to walk steadily on the 

slope. In [31], the authors utilized a Q-learning algorithm to obtain a straightforward 

gait pattern to train a humanoid robot to walk straight, where the turning direction is 

viewed as a gait parameter. 

 

2.1.5. Push Recovery (Learning-Based) 

The main objective of the MLHO problem is how to develop a balance system 

on a BHR. Therefore, likewise to a push recovery, which is also one of an essential 

method of maintaining the BHR stability. In general, the model-free RL method has an 

advantage on there is no predefined model given to the robot. The robot learns the 

optimum policy behavior based on the cumulative reward by trial-error. In the rest of 

this section, the RL applications in push recovery control problems on BHR will be 

reviewed to show similarity stability performing transporting large objects problem. 

Both of the problems should stand against perturbations from external and friction forces.  
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In [32], the authors applied the RL algorithm on a humanoid robot to learn arms 

rotation for adapting perturbation in push recovery. They used the off-line Q learning 

process to solve a computationally expensive problem and applied online execution on 

the robot. In [33], the authors solve the issue of requirement big data for learning-based 

approaches that are severely restricted to a physical humanoid robot. They implemented 

an online RL system on a full-body push recovery controller performing omnidirectional 

walking. In [34], the authors presented the Dynamical Movement Primitives (DMP) 

based push recovery for biped humanoid robot, where DMP learned bio-inspired push 

recovery strategies, such as hip-ankle strategy and step strategy. In [35], the authors 

developed a full-body push recovery system using Neural-Fuzzy (NF) controller on a 

general humanoid robot without specialized sensors and actuators. This method uses RL 

to update the parameter of the NF controller. In [36], the authors employ the Deep Q-

Network (DQN) algorithm for high-level push recovery control in small-size humanoid 

robots, where the reward formula is based on an equation that analyzes the Linear 

Inverted Pendulum Model (LIPM) from the energy point of view. 

 

2.1.6. Summary of related work 

As far as we know to the best of our knowledge, overall moving large objects 

was done mostly using the adult-sized HRP-2 humanoid robot platform [4, 7-9, 16, 17, 

19-22]. However, there’s one approach employed the TORO humanoid robot [18]. 

Therefore, the most common approach to transporting large and heavy objects was done 

using the pushing motion. Based on this literature, no approaches were exploiting a 

learning-based algorithm on whole-body large object transportation using adult-sized 

BHR. Above all, the RL algorithms are applied to a humanoid robot had shown promise 

on stabilizing walking and stance posture (push-recovery) due to perturbation given. 

Reflecting that benefit, in this paper, we introduce the transporting large object on adult-

sized BHR problems and propose an RL algorithm to deal with it. In this regard, the 

robot uses dragging motion to drag heavy and large as a novel solution for pushing 

problem. 
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2.2. Inverse Kinematic 

Inverse Kinematics (IK) calculate corresponding joint angles of a specific link 

like foot or hand of the robot from a given position and orientation of the cartesian end 

effector [3]. An example of the IK problem is shown in Figure 2-1. The important 

question to solve the configuration is shown in Figure 2-1(b). Given a set of joint angles 

at the left foot is raised by 0.2 m and turned the pitch by 10 deg. 

 

 
(a) Initial joint configurations. 

 
(b) The left foot is moved up by 0.2m and 

rotated 10deg in pitch. 
Figure 2-1 Example of inverse kinematic on the left leg of a biped robot; 

 

A humanoid robot is a mechanism consisting of many links connected by joints. 

Therefore, the theory to analyze the relationship between the position and orientation of 

each link is called coordinate transformations and rotations. The basic rotation is the 

rotation around x , y and z  axes, which will call Roll, Pitch, and Yaw respectively.  

 

A rotation point to Roll, Pitch, and Yaw an object from a given angle has to 

follow the following rotation matrix: 

 

 

1 0 0 0

0 cos sin 0
( )

0 sin cos 0

0 0 0 1

xR
 


 

 
 

−
 =
 
 
 

 (2-1) 
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cos 0 sin 0

0 1 0 0
( )

sin 0 cos 0

0 0 0 1

yR

 


 

 
 
 =
 −
 
 

 (2-2) 

 

cos sin 0 0

sin cos 0 0
( )

0 0 1 0

0 0 0 1

zR

 

 


− 
 
 =
 
 
 

 (2-3) 

 

Roll, Pitch and then Yaw a point p  around the origin, it will move the point,  

 

 ' ( ) ( ) ( )z y xp R R R p  =  (2-4) 

 

A translation by , ,a b c  in the ,x y  and z  directions respectively has the 

transformation matrix: 

 

 ( , , )

1 0 0

0 1 0

0 0 1

0 0 0 1

x y z

a

b
Trans

c

 
 
 =
 
 
 

 (2-5) 

 

If we translate point ( , , ,1)Tp x y z=  , the translated new coordinate became: 

 

 
( , , )' a b cp Trans p=  (2-6) 

 

In general, solving IK solutions exist on both the analytical method and the 

numerical method. Therefore, the position and orientation of set of links with joint 

angles are defined by nonlinear equations. Since the joint of most humanoid robots are 

rotational types, the nonlinear problem is unlikely to be solved by nonlinear equations 

with bunch of variables on the analytical method. However, the derivatives relationship 

between the position and rotation of a link and joint angles can be represented by linear 
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equations, and the solution of the IK problem can be solved by finding linear equations 

through the numerical method.  

 

 

Figure 2-2 Tree structure of the humanoid links connection [3]. 

 

The humanoid robot’s kinematic structure as shown in Figure 2-2 were formed a 

tree structure from joining of the links. This is also called the kinematic chain rule of 

the robot model. Nowadays, the most common way to acquires the IK solution from a 

kinematic chain is based on the numerical approach. Therefore, one of the famous IK 

solvers uses Jacobian Pseudo Inverse (JPI) (numerical method) that is available open-

source and called Orocos Kinematic Dynamic Library (KDL) [37]. This approach could 

give an IK solution based on the kinematic chain rule that user-provided. 

 

 

2.3. Walking Gait 

Humanoid biped robot walking gait cycles consists of two phases. These phases 

are divided into Single Support Phase (SSP) and Double Support Phase (DSP). SSP 

means that the phase is defined when only one leg touches the ground. In SSP, the leg 

that touches ground called support foot and the leg that not touches the ground called 

swing foot. On other hands, DSP is defined when both of leg touches the ground. The 

sequences of walking are illustrated in Figure 2-3, starting by the SSP phase followed 

by the DSP phase and continuously [38]. 
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Figure 2-3 Sagittal plane view of walking gait cycle [38]. 

 

A humanoid robot is structurally the same as humans, but controlling walk on the 

robot is not as rigid as it looks. A humanoid robot needs to maintain its balance contact 

between the foot and ground while walking. For this purpose, Zero Moment Point (ZMP) 

is the most famous biped humanoid walking control [39]. ZMP is the reference point of 

the robot's combined force of gravity and ground inertial force. During the walking of 

the robot, if its ZMP is regularly located in the support polygon area, the robot will never 

fall. 

 

 

 (a) Full contact on both feet. 

 

(b) Partial contact. 

Figure 2-4 ZMP support polygon [3]. 

 

Figure 2-4 illustrated the region formed by enclosing all the contact points 

between the robot and the ground by using an elastic cord braid is called support polygon. 

The projection of ground with Centre of Mass (CoM) can be displayed outside of the 

support polygon. However, ZMP always exists inside of the polygon support. Therefore, 

humanoid robots can keep balance if the ground projection of CoM is located inside of 

the support polygon as shown in see Figure 2-5. 
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Figure 2-5 Projection of the Centre of Mass on Zero Moment Point. 

 

 

2.4. Neural Network 

Artificial intelligence (AI) has become the most famous technique in robotics 

applications. One of the most powerful and widely used in AI algorithms is the Neural 

Network (NN). The main reason behind it, because NN presents an intelligence 

demonstrated by a machine that works similarly to the human brain. Briefly, the 

architecture of NN is consists of an interconnected number of nodes called neurons, that 

are organized in layers to process the data information.  

 

 

Figure 2-6 Neural network architecture. 

 

Figure 2-6 represents a NN architecture looks like. When we zoom in to one of 

the hidden or output nodes, each node is called perceptron that illustrated in Figure 2-7. 
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Figure 2-7 Operations done by neurons on a single layer perceptron. 

 

The neurons process on single-layer perceptron shows in Figure 2-7 is the math 

calculations that denotes in the equation below: 

 

 
1

n

i i

i

y f w x b
=

 
= + 

 
  (2-7) 

 

As shown in Figure 2-7 and denotes in Eq (2-7) the process can be described 

briefly as follows. (i) First, the inputs 
1 2 3, ,x x x are multiplied by variable weight

1 2 3, ,w w w  before it being sum up. Each neuron connection has its weight 
nw , and during 

the learning process, those variables are the only parameter that will be tuned. (ii) Next, 

a bias b  value is added to the total value calculated, it is not a value from a specific 

neuron. (iii) Finally, after all of those summations, the neuron applies a function called 

“activation function” to the obtained value. 

 

 

2.5. Deep Learning 

Deep learning (DL) is a subset of machine learning forms by artificial neural 

networks (ANN). The DL networks are similar to ANN but with deeper architecture 

(multiple hidden layers). The learning methods in DL can be supervised (labeled data) 

or unsupervised learning (not need labeled data). Additionally, in the DL algorithm, a 

large dataset is required to trains the model. An instance of the illustrated deeper network 

architecture of the DL model as shown in Figure 2-8. 
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Figure 2-8 Deeper network architecture of ANN or called Deep Learning. 

 

Despite the function of ANN, automatic data feature extraction is another 

function of deeper network architecture. Moreover, the feature extraction in the DL 

model layer is well famous applied in the image processing task. This layer is called a 

convolutional layer, which can obtain feature maps from several filtrations on the image 

(see Figure 2-9). 

 

 

Figure 2-9 Convolutional Neural Network subclass of deep learning3. 

 

Not only in image processing, several famous applications of DL as automatic 

speech recognition, visual art processing, natural language processing, recommendation 

systems, bioinformatics, fraud detection, mobile advertising, etc.  

 

 

 
3 https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html 
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2.6. Object Detection 

Object detection in computer vision is a method to find a target object in a digital 

image or video. Target object detection can be single and also multiple. In robotics 

applications, object detection has become fundamental as robot perception. Therefore, 

object detection can be divided into different types (see Figure 2-10). Whereas most 

approaches in object detections are based on DL-Convolutional Neural Network (CNN) 

approached.  

  

 

Figure 2-10 Various types of 2D image object detection4. 

 

 As shown in Figure 2-10, the types of famous object detection in the 2D frame 

will be briefly introduced in respectively. (i) Semantic segmentation is a technic to label 

each pixel in the image with a category label, it doesn’t differentiate instances and only 

care about pixels. The most notable semantic segmentation is based on fully CNN 

architecture [40]. (ii) Classification and localization are the common object detection 

technique that finds object position and simultaneously classified the object name. There 

are several famous researched on this approach:  Faster R-CNN [41], Single Shot 

MultiBox Detector (SSD) [42], You Only Look Once (YOLO) [43]. (iii) Instance 

segmentation is different from semantic segmentation that includes identification of 

boundaries of the objects at the detailed pixel level. Therefore, few works have focused 

on instance segmentations: Mask R-CNN [44], FCIS [45], YOLACT[46]. 

 

 
4 http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf 
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Object detection is not limited only to 2D frames. It has an expansive to 3D object 

detection. Therefore, in computer vision, 3D object detection is obtained from point 

clouds data that form a 3D model. See Figure 2-11, an example of 3D object detection 

in object classification, part segmentation, and semantic segmentation by [47]. 

 

 

Figure 2-11 Types of 3D point cloud object detection by [47]. 

 

 

2.7. Reinforcement Learning 

Reinforcement learning (RL) subset of machine learning that differs from other 

types of machine learning. The main difference is that based on trial and error, there is 

no supervisor and only depend on a reward signal. The environment is initially unknown, 

where time matters. During the agents interact with the environment, it also improves 

its policy.  

 

Figure 2-12 Markov Decision Process of Reinforcement Learning5. 

 
5 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf 
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The flow process of RL as shown in Figure 2-12, the process is divided into 

agents and environment interaction. Each step t by the agent: (i) executes an action 
tA , 

(ii) receives observation 
tO , and (iii) receives a scalar reward

tR . Meanwhile, in the 

environment: it receives an action 
tA , then emits observation 

1tO +
, and finally receives 

a scalar reward
1tR +

. These steps learning processes are performed periodically in 

episodic time-based. This means that in every single episode, the process took a set of 

actions based on increment at the environment step t . Therefore, the mathematical 

formulation of the RL problems can be defined as Markov Decision Process (MDP). 

 

A reward 
tR  is a scalar feedback signal, indicates how well an agent is doing at 

step t . All goals can be described by the maximization of Eq (2-8) expected cumulative 

reward: 

 
1 2 ...t t t t nR r r r r+ += + + + +  (2-8) 

 

During the training process, an agent should care about immediate rewards to 

rewards in the future. This is called a discounted factor  0..1   in cumulative reward. 

If 0 = , means the agent only cares about the first reward. On the other hand, 1 = , 

means agents care about all future rewards. 

 

 
2

1 2 ... n t

t t t t nR r r r r   −

+ += +  +  + +   (2-9) 

 

The agent’s job is to maximize cumulative reward. To achieve that, RL must try 

to get the optimal value function, i.e. the maximum sum of cumulative rewards. Bellman 

equation [Eq (2-10)] helps the agent get the optimal value function. 

 

 
'( , ) max ( ', ')aQ s a r Q s a= +  (2-10) 

 

In model-free RL, to learn with no prior knowledge of the environment can use 

the Temporal-Difference (TD) learning. The methods learn directly from episodes of 

experience. It can be mathematical formulate in the below equation [Eq (2-11)], 

observation before versus observation now: 
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'[ max ( ', ')] [ ( , )]aTD r Q s a Q s a= + −  (2-11) 

 

Moreover, to learn the optimal value-function in the off-policy (randomly explore 

the environment), TD learning is combined with the Bellman equation. Therefore, it also 

called as Q-Learning and express in the below equation [Eq (2-12)]: 

 

 
'( , ) (1 ) ( , ) [ max ( ', ')]aQ s a Q s a r Q s a  = − + +  (2-12) 

 

Whereas, Q-Learning algorithm required a Q table to store the Q-values based on state, 

action it takes, and rewards it acquires during the training process [48].  

 

 

2.8. Deep Reinforcement Learning 

In traditional RL algorithms, the major limitation of the approach is limited to 

small problem spaces and few possibly state in the environment [48]. This is also called 

Q-Table, where the size of the table depends on the numbers of action and state. 

However, this method is not suitable when the states of the environment are substantial. 

Later on, the famous Deep Reinforcement Learning (DRL) algorithm was introduced by 

[49]. The authors utilized deep neural network architecture into RL, to replace the Q-

Table and called it Deep Q-Network (DQN). Admittedly, the benefit of DQN that agents 

can learn a more complex environment. It allowing to have better generalization for 

unknown states and able to take action that never seen before. The illustration of the 

DQN algorithm is shown in Figure 2-13.  

 

 

Figure 2-13 Deep Q-Network architecture [50]. 
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Chapter 3: Methodology 

 

 

In this chapter, the methodology of the proposed algorithm will be discussed.  

The systems technique to approach this thesis is divided into four important parts. First, 

overviews of the architecture THORMANG-Wolf adult-sized humanoid into hardware, 

software description. Then, the proposed novel hierarchical learning method to solve the 

Moving Large size and Heavy Object (MLHO) problem is described. Second, explains 

the robot vision process. It distributed into two types of proposed DL object detection 

that are 3D object detection and floor detection. Third, it presents the robot walking 

controlling. It contains the biped robot walking controller in the ZMP walking controller. 

Finally, the details of robot behavior controlling. It shows the proposed DRL algorithm 

to achieve this dragging task. Deep Q-Learning is chosen as a type of DRL method to 

control the walking meanwhile drags an object. 

 

 

3.1. THORMANG-Wolf Robot 

THORMANG (Tactical Hazardous Operations Robot) is a full-size 

commercially available bipedal humanoid robot developed by (ROBOTIS, Inc) [51]. 

The main objective of the robot is to design an adult-sized humanoid robot as a 

researched platform. Currently, the latest version of this robot is called THORMANG3 

as shown in Figure 3-1(a). However, due to application requirements in this project, we 

have a slight modification on THORMANG3 and named as THORMANG-Wolf. In the 

rest of this sub-section, the details of our THORMANG-Wolf robot are discussed into 

three parts including the hardware description, the software description, and the 

proposed hierarchical learning-based algorithm design. 

 

3.1.1. Hardware Description 

The main difference in mechanical appearance between THORMANG3 robot 

and THORMANG-Wolf robot is on the webcam of the robot. As original 

THORMANG3 mechanical design has USB webcam Logitech C920 HD that has a 
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limited field of view (FOV), we replaced it with Logitech C930E version that has an 

expansive 90-degree wide FOV6. The dimensions of the robot are stayed the same as 

the original and illustrated in Figure 3-1(b). It has a height of 137.5 cm, a width of 42.4 

cm, and its weight including the two batteries is 42 kg. The details specification of the 

robot is shown in Table 3-1. 

 

 
(a) THORMANG3 robot. 

 
(b) THORMANG3 robot dimension (mm). 

Figure 3-1 THORMANG3 adult-sized humanoid robot. 

 

THORMANG-Wolf robot has wide ranges of manipulation and walking motions 

with an overall 29 Degree of Freedom (DOF) in total. The actuators for robot kinematics 

are consisting of three different models of Dynamixel-PRO series and 1-DOF two-

fingered Dynamixel hand. Hardware components of the robot are equipped with 

advanced computational power and sophisticated sensors (see Figure 3-2). It has two 

minicomputers, one monovision webcam, one depth camera, one LiDAR scanner, one 

force and torque (F/T Sensors), and one speaker. The robot’s electrical power is supplied 

through two batteries, which grouped into the 22.2 Volt for actuators and 18.5 Volt for 

controllers and sensors. 

 

 
6 https://www.logitech.com/en-us/product/c930e-webcam 
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Table 3-1 THORMANG-Wolf Specification Details. 

Category Specification Value 

Dimension Weight 42 Kg 

 Height 137.5 cm 

DOF Head 2 DOF 

 Arm 2 × 7 DOF 

 Leg 2 × 6 DOF 

 Waist 1 DOF 

Actuator  H54-200-S500-R 10 × 200W  

 H54-100-S500-R 11 × 100W  

 H42-020-S300-R 8 × 20W  

 RH-P12-RN 2 × 80W 

 

 

Figure 3-2 THORMANG-Wolf hardware architecture. 

 

The electrical components of the THORMANG-Wolf robot are shown in Figure 

3-3. The main controller is distributed into three computers: (I) Perception Personal 

Computer (PPC), (II) Motion Personal Computer (MPC), and (III) Operating Personal 

Computer (OPC). Two computers (MPC and PPC) are attached to the robot and one 

computer (OPC) is located outside of the robot. MPC handles the dynamic kinematic 

system of the robot that computes every joints movement by translating into positions 

of actuators. PPC for perception processing that is acquiring sensors data in the robot. 

OPC works as manager processing to integrate the MPC and PPC. Therefore, to 

accommodate a multi-computers communication system in this robot, a router located 
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on the back of the robot is employed for the ethernet connection across this collaborative 

computer system. 

 

 

Figure 3-3 THORMANG-Wolf electrical components system. 

 

3.1.2. Software Description 

The software system of the THORMANG-Wolf robot was built initially using 

the Robot Operating System (ROS) software. Whereas, the ROS Kinetic Kame version 

is chosen as the compatibility version alongside with Ubuntu 16.04 (Xenial) operating 

system. It is well known that ROS is a set of software libraries and tools that was 

originally designed for robotic applications7. The main advantage of using ROS is the 

message passing feature that can easily be developed under a multi-computer 

communication system. Another benefit is the multi-language programming 

compatibility. Therefore, the software description of the THORMANG-Wolf robot is 

illustrated in Figure 3-4.  

Figure 3-4 presented the simplified ROS graph architecture of the THORMANG-

Wolf robot on the dragging task. The core management of the systems is distributed into 

three different computers. Those three types of computers are as follows respectively: 

(i) PPC computer preprocess sensor perception acquisition on webcam and LiDAR 

scanner into two different ROS topics: “/rgb_image” and “/point_cloud”. (ii) MPC 

 
7 https://www.ros.org/about-ros/ 
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computer provides “/robot_state” directly from the F/T and IMU sensors, then 

subsequently calculates the dynamic kinematic in the “/CONTROL_MANAGER” to 

read and write positions of each joint. (iii) OPC computer works as a management 

substance inside the “/MAIN” node to manage behavior control from PPC sensor input 

into the MPC action movement. Overall, those multi-computers systems were done 

using ROS to have a synchronized system of a humanoid robot in perception, behavior, 

manipulation, and locomotion. 

 

 

Figure 3-4 ROS graph architecture performing a dragging task.  

Note: ROS node and topic is represented by ellipses and rectangle shape respectively. 

 

 

3.1.3. The Proposed Algorithm Design 

The algorithm design for the dragging task in the THORMANG-Wolf robot is a 

hierarchical independence framework at three different levels including robot vision 

process, behavior control, and motion control. The details of those frameworks are 

illustrated in Figure 3-5. 

As it is illustrated in Figure 3-5, first, the vision process is divided into two sub-

categories: (I) Object detection and (II) Floor detection. Object detection reads point 

clouds data from the LiDAR scanner and then feeds into the proposed DL for classifying 

object type. A result of object detection results will be used to determine pre-recorded 

manipulation motion for grasping the object. On the other hand, the floor detection uses 

RGB images obtains from the robot webcam. It feeds the images into the proposed 

lightweight DL algorithm for real-time instance segmentation on floor types detection. 

So then, the floor type result goes to DQN to adjust the offset coefficient of the Centre 

of Body (CoB).  
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Figure 3-5 THORMANG-Wolf hierarchical framework data flow diagram.  

Note: The term “Ack” indicating a process termination acknowledgment and red color shape points 

out the proposed hierarchical deep learning algorithms. 
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Second, the behavior control, which is also the main proposed DRL method in 

this MLHO problem. For this purpose, we used a DQN algorithm to learn the parameter 

of the walking balance control policy. This algorithm learns the behavior control based 

on robot states that are acquired from IMU and F/T sensors. As a result, the setpoints of 

XCoB  parameters were tuned automatically by the DQN algorithm in real-time during 

the dragging procedure. 

 

Finally, the motion control, which handles all processes of robot movement. It 

comes from instructions controls to take action in sequential order. Moreover, there are 

two main functions of motion control are described as follows. At first, the grasping 

motion act as a motion manager that can store and play the recorded grasping motions 

for various objects. Then, followed by the walking control, it produces the walking 

footstep generator by solving the inverse kinematics of legs using Pseudo Jacobian 

Inverse and generates walking gait pattern.  
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Figure 3-6 Block diagram of the proposed DL algorithms to solve MLHO problem. 

Note: the red color blocks are the proposed algorithms. 

 

In this regard, based on the hierarchical framework of the algorithm design 

illustrated in Figure 3-5, our proposed learning-based algorithms consists of three 

learning phases respectively to solve the problem as follows: (i) Deep Learning 

algorithm on 3D object classification. (ii) Deep Learning algorithm on real-time instance 
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segmentation for floor detection. (iii) Deep Reinforcement Learning algorithm on the 

walking balance control policy. Therefore, to clarify the MLHO process in sequential 

order, drawn a block diagram of the proposed hierarchical learning-based algorithm to 

solve MLHO problems more clearly as illustrated in Figure 3-6.  In summary, each part 

of the data flow diagram in Figure 3-5 with the proposed hierarchical methods on the 

MLHO problems will be described individually. 

 

 

3.2. Robot Vision Process 

It is a very significant point on a humanoid robot to have a vision system to 

visualize the environment and identified objects. The problem of this dragging task can 

be simplified to a robot need to know what kind of object it will move and on which 

type of surfaces. In this section, the vision processing of the robot is divided into (I) 3D 

object detection and (II) Floor detection (instance segmentation). However, both 

processes are based on DL approaches and will be described below. 

 

3.2.1. 3D Object Detection (Deep Learning) 

Single two-dimensional (2D) images from a robot camera actually can provide 

an instance of visual information to this problem. However, information from the 2D 

image is limited to the two-dimension projection of length and width, whereas the three-

dimension (3D) of the object’s height is indistinguishable. Unlike 2D images, point 

clouds data contains 3D data that provide a rich source of information. Therefore, the 

point clouds are acquired by using the LiDAR scanner from the robot. The main 

objective of this approach is to use the LiDAR scanner to classified objects. After the 

object has been classified, the output will be used for selecting pre-recorded 

manipulation motion to grasp the object. 

 

It is well-known that the state-of-the-art 2D image object recognitions were based 

on Convolutional Neural Network (CNN) [40-44]. The same concept also has been 

applied for 3D point cloud data object detection by using CNN as well [47, 52, 53]. On 

the other hand, in contrast to the camera, LiDAR has no interference with lighting 

 



31 
 

conditions that leads to increasing the robustness of the system. Therefore, the 

implementation of this object classification algorithm is based on CNN. The general 

flowchart of the proposed object classification is illustrated in Figure 3-7. 

 

 

Figure 3-7 Flowchart DL algorithm of 3D object classification. 

 

The working process on DL 3D object classification is described in the following. 

First, the LiDAR point cloud data were acquired from the robot head’s scanning process. 

As shown in Figure 3-8(a) the LiDAR point clouds data includes additional information 

about the environment from scanned results. To tackle this issue, it is suitable to perform 

filtering on point cloud data. Removing additional features from raw point clouds, in 

other words, to extract important information, will lead to increases and robustness of 

DL models. For this reason, a proposed heuristic algorithm is applied to filtering and 

extract the object from a cluttered environment as shown in Figure 3-8(b). In this process, 

Euclidean distance-based filtering to extract the object from the environment is proposed 

and given by the following formula.  
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d p q
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Where p , and q  are two points in Euclidean space, then the distance d  from 

p  to q  is calculated by each axis i , indicate the axis of ( , , )x y z respectively. So, in the 
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filtering process, if there was no object in front of the robot, it redoes the scanning 

process for collecting the point cloud data. 

 

Based on the structure of DL algorithms in general, DL models are required a 

fixed amount of input size to feed into the model. Also, it is well-known that the total 

number of points given each time of LiDAR scanned result has no fixed shape. To deal 

with this, Voxel Grid (VG) filter is utilized to downsample the point cloud data into a 

regular voxel grid representation [54]. Therefore, in the VG process, the filtered object 

point clouds were discretized spatially as binary voxel at 30×30×30 volumetric 

occupancy grid (see Figure 3-8(c)], where each voxel is assumed to have a binary state 

(occupied or unoccupied). Next, a fixed size of voxels data (occupancy grids) is 

continued to the input of the DL model. During this process, the DL model performs 

mathematical calculations for processing this 3D classification task. Finally, the last 

process also known as the output of the DL model will give a predicted answer based 

on the highest probability to recognize which type of object. 

Exploiting volumetric representation of the voxel data for 3D shape recognition, 

the empirical applications of shape recognition have become popular in the DL-based 

approaches [52, 53]. The most notable 3D shape recognition, that integrating a 

volumetric occupancy grid representation with a supervised 3D CNN provided by [52]. 

In [52], the authors introduced VoxNet, as a 3D CNN multi-class classification task on 

binary voxels data with a simple network architecture resulting in real-time performance. 

One other research study on volumetric 3D object multi-class classifications was 

presented in [53]. In [53], they proposed a lightweight Volumetric-CNN1 (V-CNN1) 

model. In this method, the volumetric 3D object was represented in the form of a set of 

spatially convoluted 2D images (known as feature maps). So, instead of using a 3D 

convolutional layer, the authors use a 2D convolutional layer for convoluting the 3D 

volumetric occupancy grid and achieved a faster training process (because of using 

fewer parameters). Although 2D convolutional were outperformed in 2D images 

classifications  [40-44], the result was not as good as in the 3D occupancy grid [53]. It 

shows on V-CNN1, the classification accuracy was slightly decreased in comparison to 

VoxNet [52] (use 3D convolutional) on the same 3D data set. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3-8 Example process of preprocessing 3D point cloud data. 

Note: left figure: raw point cloud data, middle figure: filtered point cloud data, and right figure: after 

voxel grid filter. 

 

Regarding the two mentioned models in the previous paragraph, that were 

outperformed on multiclass classification in the 3D volumetric occupancy grid. 

However, there are shortcomings of existing models described as follows. In the VoxNet 

model [52], the authors consider only a very small network that contains only two 3D 

convolutional layers and two fully-connected layers. In this regard, shallow network 

architecture caused the model lacks to generalize the data (learn more features on 

various levels) [55]. On the other hand, in V-CNN1 [53], the authors used deeper 

network architecture (depth-5 layers) but fail to establish a relationship between 3D data 

from the 3D convolution benefits. So, in this thesis, we proposed a new model called 

Three-layers Convolution Volumetric Network (TCVN) as a robust learning method to 

tackle issues of previous models. As shown in Figure 3-9, TCVN is based on the VoxNet 

and V-CNN1 reference concept, which is using deeper network architecture along with 

a 3D convolution layer.  

As shown in Figure 3-9, the proposed model using a volumetric occupancy grid 

computed with size 30 × 30 × 30. This model consists of three 3D convolutional layers, 

all with 32 filters of size 3 and stride 1. Correspondingly, the convolution layers are 

followed by batch normalization and three ReLU activation functions along with two 
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max-polling layers. The ReLU layer is to introduce non-linearity in the model by 

activating only positive neurons. The pooling layer following ReLU ensures that 

neurons do not contribute to the model from learning redundant information of spatial 

voxel. Also, there are two fully connected layers in the last part of the model, where the 

final fully connected layer used a SoftMax function to normalize the probability 

distribution of each class score. During the training, dropout with a probability of 0.5 is 

used to prevent overfitting, and an Adam optimizer with a standard base learning rate of 

0.001 was employed for updating the model weights. Overall, the details of the proposed 

model are presented in Table 3-2. 

 

Table 3-2 The network details of the TCVN model. 

Layer type 
Filter size / 

Dropout rate 
Stride Output Size 

Number of 

parameters 

Convolution 3D 3 × 3 × 3 1 × 1 × 1 32 × 30 × 30 × 30 896 

Batch Norm. - - 32 × 30 × 30 × 30 128 

ReLU - - 32 × 30 × 30 × 30 - 

Max pooling 3D 2 × 2 × 2 2 × 2 × 2 32 × 15 × 15 × 15 - 

     

Convolution 3D 3 × 3 × 3 1 × 1 × 1 32 × 13 × 13 × 13 27680 

Batch Norm. - - 32 × 13 × 13 × 13 128 

ReLU - - 32 × 13 × 13 × 13 - 

     

Convolution 3D 3 × 3 × 3 1 × 1 × 1 32 × 11 × 11 × 11 27680 

Batch Norm. - - 32 × 11 × 11 × 11 128 

Max pooling 3D 2 × 2 × 2 2 × 2 × 2 32 × 5 × 5 × 5 - 

Dropout 0.5 - 32 × 5 × 5 × 5 - 

     

Fully connected - - 2048 8194048 

Batch Norm. - - 2048 8192 

Fully connected - - 5 10245 

 

 

Figure 3-9 The network architecture of the TCVN model. 

Conv(32,3,1) / ReLU / 

BN / Max-Pool(2,2)

Conv(32,3,1) / 

ReLU / BN / 

Conv(32,3,1) / ReLU / 

BN / Max-Pool(2,2)

5

2048

...
...

...

1 × 30 × 30 × 30 

32 × 12 × 12 × 12 32 × 10 × 10 × 10 32 × 5 × 5 × 5 
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3.2.2. Floor Detection (Deep Learning) 

One of the important features in MLHO tasks is a humanoid robot should know 

in what type of floor it performs the dragging task. In this section, the object instance 

segmentation technique is employed for the floor detection from the robot camera. 

Therefore, this algorithm will identify partitioning pixels image into a segmentation 

mask of floor area. As a result, the segmented pixels provide the information in which 

type of ground it performs the dragging task. Figure 3-10 shows three different types of 

floors where the humanoid robot will be evaluated on the dragging task. 

 
(a) Plywood. 

 
(b) Green carpet. 

 
(c) Tile 

Figure 3-10 Types of floors used in this experiment. 

The state-of-the-art instances segmentation was introduced by [44]. In [44], the 

authors introduced Mask-RCNN that was built with focuses on performance. However, 

these instance segmentations are accurate but it only runs on 5 frames per sec (fps) on 

modern computer hardware. The main reason, because they force using expensive re-

pooling operation in the ROI-align. Also, the Mask-RCNN model used a two-stage 

detector, which means the computational in the model happened in sequentially.  

 

Later on [45], the authors introduced a real-time instance segmentation called 

YOLACT (You Only Look at Coefficients) that beats state-of-the-art instance 

segmentation in terms of speed. They used a one-stage detector and produce two parallel 

parts solution to split mask computation. First, they create a set of “prototype” mask for 

the whole image. Second, linearly combine those prototypes using coefficients from the 

prediction head.  

 

As shown in Figure 3-11, the design of YOLACT network architectures is 

presented in detail. First, the model uses the standard Residual Network (ResNet) with 
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Feature Pyramid Net (FPN) as the backbone network. Then, FCN (“Proto Net”) is 

attached to the largest FPN layers to produce this whole prototypes masks. Second, in 

parallel, the standard “Prediction Head” predicts the linear combination coefficients for 

each anchor box. Finally, the models do some minimal post-processing (crop and 

threshold) to obtain the final mask.  
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Figure 3-11 YOLACT network architecture [46]. 

 

For training the mask branch, a pixel-wise loss is applied only on the final 

assembled mass. Thus, the prototypes and linear combination coefficients only get 

downstream supervision from the mask loss. This means the combination is not 

constraining of any semantic. Therefore, the leads to the prototypes taking on some 

various translation variants in a fully convolutional network. 

 

Furthermore, as stated in the original of ResNet [56], the authors validated deeper 

residual network lead to lower loss value that improved the accuracy. Therefore, in [46], 

the authors use ResNet-101 as the default backbone in the YOLACT model. They 

trained the model with a base size image 550 × 550 on advanced Microsoft-Common 

Object in Context (COCO) dataset. Furthermore, their method achieved results above 

30 fps on the COCO dataset by using the ultimate graphic processing unit (GPU) 

NVIDIA Titan XP. 
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As shown in Figure 3-12, the ResNet building blocks are categorized into two 

types. (i) Figure 3-12(a) illustrated the two sequential convolutional layers in the basic 

block for building ResNet-18 and 34 block function. (ii) Figure 3-12(b) shown a deeper 

network of three sequential convolutional layers to build a bottleneck block function of 

Resnet-50, 101, and 152.  

 

Table 3-3 The adopted ResNet architecture and number of parameters [56]. 

layer name output size 18-layer 34-layer 50-layer 101-layer 

conv1 112 112  7 × 7, 64, stride 2 

conv2_x 56 56  

3 × 3 max pool, stride 2 

3 3,64
2

3 3,64

 
 

 
 

3 3,64
3

3 3,64

 
 

 
 

1 1,64

3 3,64 3

1 1,256

 
 

 
 
  

 

1 1,64

3 3,64 3

1 1,256

 
 

 
 
  

 

conv3_x 28 28  
3 3,128

2
3 3,128

 
 

 
 

3 3,128
4

3 3,128

 
 

 
 

1 1,128

3 3,128 4

1 1,512

 
 

 
 
  

 

1 1,128

3 3,128 4

1 1,512

 
 

 
 
  

 

conv4_x 14 14  
3 3,256

2
3 3,256

 
 

 
 

3 3,256
6

3 3,256

 
 

 
 

1 1,256

3 3,256 6

1 1,1024

 
 

 
 
  

 

1 1,256

3 3,256 23

1 1,1024

 
 

 
 
  

 

conv5_x 7 7  
3 3,512

2
3 3,512

 
 

 
 

3 3,512
3

3 3,512

 
 

 
 

1 1,512

3 3,512 3

1 1,2048

 
 

 
 
  

 

1 1,512

3 3,512 3

1 1,2048

 
 

 
 
  

 

 1 1  average pool, 1000-d fc, softmax 

FLOPs 91.8 10  93.6 10  93.8 10  97.6 10  

Number of Parameters 11.176.512 21.284.672 23.508.032 42.500.160 

 

 
 (a) Basic block (for ResNet-18/34) 

 
(b) Bottleneck block (for ResNet-50/101/152) 

Figure 3-12 Building block (residual function) of ResNet [56]. 

3×3, 64

3×3, 64

ReLU

ReLU

64-d

1×1, 64

3×3, 64

ReLU

3×3, 64

ReLU

ReLU

256-d

 



38 
 

Generally, the original YOLACT model was tested to predict 80 class categories 

in the COCO dataset. However, the objective in this floor detection was simplified only 

to detect three types of objects, which is much simpler compared to the COCO dataset. 

Therefore, in this section proposed a new simple model called Tiny-YOLACT. This 

proposed model is fully based on YOLACT architecture with modification only on the 

backbone network. The main advantage of the Tiny-YOLACT model that it uses 

ResNet-18 & ResNet-34 which has a smaller number of weight parameters. As a result, 

this model can also run on a moderate level NVIDIA GPU. The details of each network 

architecture of ResNet and total numbers of parameters presented in Table 3-3. 

 

3.3. Robot Motion Control 

In this section, the development of robot motion controlling as shown in Figure 

3-5 is centralized in the motion planner. Wherefore, it consists of a grasping motion and 

the main walking control itself. However, both will be described below. 

 

3.3.1. Object Grasping 

 
(a) Office chair 

 
(b) Foot chair 

 
(c) Small suitcase 

 
(d) Big suitcase 

Figure 3-13 Sample pre-recorded motion for grasping different types of objects. 

 

The first step to drag an object is to grasp it properly. There are many researched 

focuses on manipulation grasping different types of objects. However, the objective of 

this work is to focus on designing a balanced walking on BHR to solve the MLHO 

problem. Therefore, to grasp the experimental object, whole-body motion capture is 
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employed to record the robot gesture. Moreover, it is natural for a humanoid robot with 

a design similar to human structure, for imitating human motion on grasping an object. 

As shown in Figure 3-13, the robot postures on different objects were recorded.  So then, 

those motions will be used when the robot has identified the object from the output of 

3D object classifications. 

 

3.3.2. Walking Control 

The THORMANG-Wolf robot used a closed-loop walking engine based on Zero 

Moment Point (ZMP) walking control [57]. The closed-loop walking engine of biped 

humanoid robots can be illustrated like a cart-table model as shown in Figure 3-14. First, 

a cart with mass M  running on a lightweight table with mass is insignificantly small. 

Then, the size of the table foot is too narrow to stabilize the cart on the table edge. 

Therefore, the table-cart models show by keeping cart runs on certain accelerations it 

can keep a spontaneous balance of the table. Same like biped humanoid robot walking 

on the ground, the position of ZMP is given as: 

 cz
p x x

g
= −  (3-2) 

Where x is the moving coordinate, 
cZ is the constant height of the Center of 

Gravity (CoG), g is the gravity and x  is the acceleration. Walking pattern generation 

based on a cart-table model takes the trajectory of CoM as input and resulting ZMP as 

output. Therefore, ZMP based walking pattern generation is an inverse form of a 3D 

linear inverted pendulum. Regarding a cart-table model as a dynamical system, the CoM 

motion starts before the changes of the ZMP. This means the cart must move before the 

change of input in the system.  
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Figure 3-14 Cart-table model 

Note: Robot walking behavior is close to a cart moving on a massless table. The condition of the moving 

cart decides the center of pressure operating from the floor (the cart is changing ZMP). 

 

In [58], the authors used cart-table model as a dynamical system and designed a 

pattern generator, which is called preview-control as shown in Figure 3-15. 

 

 

Figure 3-15 Walking pattern generation based on preview control  

Figure 3-15 shows a block diagram for the walking pattern generator based on 

the ZMP preview control. First, we regard the reference ZMP and the cart status 

calculation in FIFO buffer as the input of the preview control system. Then, the control 

vector ku  can be obtained by Equation (3-3)  based on the ZMP reference and the cart 

current state. While according to the system equation, the position on x  axis and y axis 

of CoM is the result of pattern generation. With this information, the CoM trajectory is 

taken from the position of the cart. 
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Where , ,s x jK K G are the gains for preview controller, refp is the ZMP reference, 
jp

is the ZMP output, 
kx is the state of the cart including position, velocity, and acceleration. 
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Figure 3-16 Walking gait pattern generation process. 

Note: Red block is the parameter to be controlled by our proposed methods. 

 

The process of walking gait generation processes of THORMANG-Wolf robot 

shown in Figure 3-16 is described as follows. First, the footstep data takes an input of 

step-number, step-time, step-length, side-step-length, and step-angle-degree to 

generates footstep data array. Then, the footstep data planning is used to produce a 

walking pattern and foot trajectory. Therefore, as described in Figure 3-15, the walking 

pattern generation generates the CoM trajectory in ,x y  axis for the ZMP tracking 

control system. Meanwhile, on the foot trajectory generator, we use a sigmoid pattern 

to generate the gait pattern and obtain trajectories of the CoM and ankles. As a result, it 

generates a smooth gait pattern when lifting a leg during the walking phase. Next, we 

use the balance algorithm to adjust the walking trajectory for keeping the robot stable 

during walking. 

The balancing algorithm calculates the difference between the reference and 

actual pose of the robot based on the robot state. Therefore, an Inertial Measurement 

Unit (IMU) sensor with Force and Torque (F/T) sensor is used as feedback to read the 

robot state. Moreover, the additional offset of CoM in ,x y  axis will be used for the 

behavior control on the deep reinforcement learning. As a result, the balance algorithm 

and offset CoM are combined. Thus, the equation become 
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g

g

g

lf lf lf

rf rf rf

CoM CoM CoM

 = + 


= + 
 = + 

 (3-4) 

Where , ,g g glf rf CoM are defined as goal coordinate of the left foot, right foot, 

and Centre of Mass,  is the difference offset resulting from the balance algorithm. 

Finally, we utilized an inverse kinematics solver to calculate all the angles of joints on 

the legs from the result of Equation (3-4). 

 

3.4. Robot Behavior Control 

As illustrated in Figure 3-5, the THORMANG-Wolf robot software system is 

comprised of a behavior-controlling level. At this level, we proposed a Deep Q-Learning 

to Learn the Centre of Body (DQL-COB) algorithm for the behavior control of 

THORMANG-Wolf robot on this dragging task. It is worth mentioning that the 

proposed DQL-COB is part of the proposed hierarchical DL algorithm design in terms 

of the DRL algorithm on the walking balance control policy. Therefore, the output from 

the DQL-COB algorithm resulting in a Centre of Body in X-Axis (
XCoB ) offset value, 

as the parameter to the robot walking module. The integration of the walking module 

with the DQL-COB algorithm is illustrated in Figure 3-17. 

 

 

Figure 3-17 Integration walking module with the DQL-COB algorithm. 

Based on this figure, the flow process of unified systems is divided into two 

central control and described as follows. First, on behavior control where the array 

footstep data generated from the footstep generator will be given to walking module. 
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Then, walking control will generate the walking gait pattern and also activate the 

balance control (see Figure 3-16). Next, the robot starts to walk derived by walking 

module. Finally, the DQL-COB algorithm will provide a balance parameter based on 

the closed-loop feedback state of the robot continuously and in real-time.  

 

One of the objectives of this thesis problem is to have a balance backward 

walking meanwhile dragging large size and heavy objects. Therefore, the initial step for 

applying the RL-based algorithm is to create or set up an environment for the agent to 

interact. Hence, to avoid costly experiments in terms of time and physical training, the 

environment and training process was done in the Gazebo8 simulator that also integrated 

with ROS. As shown in Figure 2-12, MDP is the mathematical formulation of the RL 

problems. Also, Markov's property represents the current state completely characterizes 

the state of the world. Therefore, MDP also defined by a tuple object ( , , , )S A R P .  

 

3.4.1. DQL-COB Algorithm Design 

In the rest of this section, the proposed DQL-COB algorithm including five 

phases to solve the MLHO problems are described respectively. 

 

 States space 

The first tuple object of MDP is the set of possible states S in an environment. 

Since the aim is to have balance dragging actions. Therefore, utilizing data from the 

Inertial Measurement Unit (IMU) with Force and Torque (F/T) sensors for reading the 

robot state whether robots in stable condition or not. Generally speaking, the IMU sensor 

has a characteristic of angular value output to represent each of the axes. The IMU 

sensors in the THORMANG-Wolf robot illustrated in Figure 3-18 (a) consists of 6 DOF. 

However, in this environment, only the pitch and roll axis were selected as an important 

feature to provide into the agent. 

It is well-known that to normalized the data before feed data into a deep neural 

network. Therefore, in the NN literature, normalizing also often refers to rescaling by 

 
8 http://gazebosim.org/ 
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the minimum and range of the vector, to make all elements lie between 0 and 1. For this 

purpose, IMU pitch and roll angles are normalized to comply with that. It can also 

achieve an efficient training process by having a faster training process (due to the 

mathematical structure of calculation in a neural network).  

 

 

(a) 6-DoF axis IMU sensor 

 

(b) Normalize theta of IMU Pitch & Roll using sin . 

Figure 3-18 IMU sensor as a state of the environment. 

 

In contrast to the IMU sensor, the F/T sensor located in the robot’s ankle also 

provide the robot state. It acts as a perceiving robot’s foot state whether on the ground 

or air. Particularly, the torque sensor gives output in vector product of the force 

magnitude and the perpendicular distance of the action force line (see Figure 3-19). Due 

to the complexity number given by torque sensors, those values are preprocessed using 

the binarization method before feed into the deep neural network. The binarization 

process is explained in Algorithm 1. 

 

 

Figure 3-19 Torque vector on both feet. 
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The algorithm 1 details are explained in the following. First, initializing constant 

threshold value for each foot. Due to torque values are in a three-dimension vector, 

therefore obtaining the length of the torque vector was done by calculating Euclidean 

distance towards the origin axis (0,0,0) . Finally, after vector distance is acquired, 

thresholding the values for each foot to binarized it: 0 if foot on the air and 1 if a foot 

on the ground. These processes are repeated in a loop for each foot. 

 

Algorithm 1: Binarization torque sensor 

1. Initialize threshold T  for each foot M  

2. For j = 1, M do  

3. Calculate Euclidean distance  
3

2

1

( 0)j i

i

d p
=

== −  

4. Set 
0   

1

j j

j

if d T
y

otherwise

 
=  

 
 

5. End For 

 

So, the total states in this environment are 4 states. Given by normalized IMU 

pitch and roll, also the binarized torque value of each foot. Which is the state S can be 

denoted as ( , , , )Pitch Roll Lfoot Rfoot . 

 

 Actions space 

The second tuple object of MDP is the set of possible actions a  in an 

environment. As illustrated in Figure 3-20, the action in this DQN approached is 

simplified to offsetting the parameter of the balance control algorithm in the Center of 

Body in X  axis (
XCOB ). The main concept to achieve stable walking meanwhile 

receiving disturbance is by keeping ZMP point in the support polygon. Therefore, the 

offset of the Center of Body in the x-axis is the most critical point to achieve that. So, 

in total there are 3 actions to be learned by the DQN agent. Those actions are for 

increment, decrement, and do nothing towards the offset parameter 
XCOB . 
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(a) Offset (-) COB X 

 

(b) Default COB X 

 

(c) Offset (+) COB X 

Figure 3-20 Action offset on COB X. 

 

 Rewards function 

The third tuple object of MDP is the value of the reward R  from distribution 

given by (state, action) pair. In this environment, reward functions were calculated from 

two main factors. Figure 3-21 illustrates those factors that are from the IMU pitch sensor 

and traveled distance toward the goal target. The details of reward functions are 

presented in Algorithm 2. 

 

First, rewards based on the balance factor, the reward is calculated on how a robot 

could maintain its pitch angles during the dragging task. Therefore, the robot’s pitch 

angle denoted as  , if the  degree within the threshold range, means robot in stable 

condition then 1r  is 1. Conversely, when   it is out of the stable threshold range then 1r  

it will less than 1, it calculated from the division of the error differences of the threshold 

t . Consequently, if the robot falls then the agent will get a -1 reward or called 

punishment, it also terminates the step.  

 

Second, the reward is based on accomplished walk distance. Additionally, in this 

study, the target distance that the robot requires to walk is to drag an object for 2-meter 

and walking backward. Therefore, another 2D Euclidean distance utilized to measured 

walk distance for reward 2r  calculation. It means, the closer to the finish line, the 

distance reward 2r  will be close to 1. Furthermore, when robots finished dragging or 
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successfully walk in 2-meter the 2r will also be 1. Overall, the total reward function r

is obtained 
1 2r r .  

 

Algorithm 2: Reward function 

1. Initialize threshold  t  for a stable state   9.   Initialize f  for finish distance   

2. if  t  is fall then 10. if  d  is finished then 

3.   
1 1r = −  11.   

2 1r =  

4. else if t  >   > t−  then 12. else 

5.   
1 1r =  

13.   2
1r

f d
=

−  

6. else 14. end if 

7.   
1

1r
t

=
−

  

8. end if 15. 1 2r r r=   

 

 

(a) Based on pitch   

 

(b) Based on distance 

Figure 3-21 Reward based on robot pitch state and finished distance. 

 

Finally, the total cumulative reward will be obtained from cumulating this reward 

tr  in each step. Then, the RL algorithm agent tries to find an optimal policy to receive 

maximum rewards by keeping robot stables in the desired pitch angle and walk-in 

backward direction as close as to finish line target. 

 

 Deep Q-Network 

The main objective of the RL algorithm is to find an optimal policy *  that 

maximizes the expected sum of rewards. Therefore, an agent acts in the environment 

PITCH

 



48 
 

and receives a reward, where the optimal Q-value function *Q  is the maximum 

expected cumulative reward achievable from a given (state, action) pair of the following 

policy. 

 

 
0 0

0

*( , ) | , ,t

t

t

Q s a E r s s a a 


 
= = = 

 
  (3-5) 

 

Solving for that, a Deep Q-Learning uses a deep neural network as a function 

approximator to estimate the action-value function. Therefore, the Q-value function is 

determined by those neural network data parameter   weights. Given this function 

approximation, finding the optimal policy it requires to calculate the Q-function that 

satisfies the Bellman equation. 

 

 
*

'~
'

( , ) max *( ', ') | ,s
a

Q s a E r Q s a s a  = +
 

 (3-6) 

 

DQN algorithm enforces the Bellman equation to have neural network 

approximating Q function. Therefore, it can be accomplished by training the network 

where the loss function is going to minimize the error of the Bellman equation. However, 

the forward pass of the neural network is given by the following equation. 

 

 
2

, ~ (.)( ) ( ( , ; ))i i s a i iL E y Q s a  = −   (3-7) 

 

Where, 
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'

max *( ', '; ) | ,i s i
a

y E r Q s a s a   −
 = +
 

 (3-8) 

 

and the backward pass (gradient updates concerning Q-function parameters) 

 

 ( ) ( ), ~ (.); '~ 1
'
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 (3-9) 

 

Furthermore, the proposed deep neural network architecture for estimating Q-

function is shown in Figure 3-22. In this situation, the goal is directly predicting Q-
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function over a network (concept: doing regression towards Q-value). Therefore, the 

proposed model consists of 3 fully connected layers. The first layer or also the input 

layer receives the state from the robot. Then, the second and third layer consists of 128 

and 64 neurons with ReLU activation respectively. Finally, the last layer has a vector of 

output, calculates Q-value corresponding to each action.  

 

Table 3-4 Details of the Q-Network architecture. 

Layer type Neurons 
Number of 

parameters 

Input 4 - 

1st Hidden Layer 128 640 

ReLU 128 - 

2nd Hidden Layer 64 8256 

ReLU 64 - 

Output Layer 3 195 

 

 

Figure 3-22 Hierarchical Q-Network architecture.  

Since the proposed network has 3 actions, there is 3 scalar value (Q-values) given 

by 
1 2 3( , ), ( , ), ( , )t t tQ s a Q s a Q s a . By using neural network structure, efficiently a single 

feedforward pass can compute Q-values for all actions from the current state. Overall, 

the details of the proposed model are presented in Table 3-4. 

 

 Training Process 

As described before, based on loss function on Eq (3-7), the aim is to iteratively 

make Q-values as close to target values. However, learning from batches of consecutive 

128

64

4
3
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samples is problematic. In [49], the authors evaluated learning directly from consecutive 

samples is inefficient, it has highly correlated data. Because current Q-network 

parameters determine the next training samples, it leads to bad feedback loops. 

Therefore, addressing that problem by using experience replay. Storing the transition of 

history states
1( , , , )t t t ts a r s +

 in replay memory and minibatch randomizing the samples 

breaks these correlations and reduces the variance of the updates. 

 

 

Figure 3-23 Experience replay illustration on training data. 

 

As shown in Figure 3-23, red and green dots present the correlated data. On the 

other hand, oranges dot breaks the correlation by randomized sample the experience. 

During training, the Q-learning uses the Eq (3-10) as the loss function with sample 

experience replay memory on the forward pass. 

 

 ( )
2

( , , , ') '( ) ~ ( ) max ( ', '; ) ( , ;
ii i s a r s a iL E U D r Q s a Q s a   − = + −

  
 (3-10) 

 

Another problem listed on [49], RL algorithm is considered non-stationary 

distributions. It is unstable or even divergent when a nonlinear function approximator 

(e.g. neural network) is used to represent the action-value (Q-function). Therefore, using 

an iterative update to adjusts the Q-values towards target values within periodically 

update, it can reduce correlations with the target. This solution also illustrated in Figure 

3-24. 
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Figure 3-24 Solution to non-stationary target DQN. 

 

As shown in Figure 3-24, target values are calculated by using a target network, 

which is the duplicate network of the learning network. Whereas, the weight parameters 

of the target net using an older set of parameters and periodically update. It made effects 

on targets 
iy , which make oscillations and divergence more unlikely. During training, 

greedy − algorithm shown in [Eq (3-11)] is used for the exploration and exploitation 

problem.  

 

 
 *  1

 

optimal a
a

random





−
= 


 (3-11) 

 

Moreover, in [49], the authors also evaluated clipping the error from the update 

'max ( ', '; ) ( ', '; )a i ir Q s a Q s a  −+ −  to be between -1 and 1. The benefit of error 

clipping leads to stability training. Since the absolute value loss function x  has a 

derivative of -1 for all negative values and a derivative of 1 for all positive values. 

Therefore, for error values outside of the range (-1,1), this clipping error is similar to 

using an absolute value loss function. Identically, the approach in this dragging task is 

similar to the approached done by [49]. Whereas, the whole training process explained 

above is illustrated in Figure 3-25.  
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Figure 3-25 Block diagram of Deep Q-Network on ROS Gazebo simulator. 

 

Putting all those together, the block diagram in Figure 3-25 also represented in 

Algorithm 3. The details of those are described briefly. First, initialize replay memory 

D  with some capacity N  and also initialize Q-Network with some random initialize 

weight  . Then, start to train the dragging task with the episode M . This loop for 

training the whole episode. Afterward, initializing the state S  by resetting the simulator 

and acquired robot initial state at the beginning of each episode. Note that, the state S  

is the preprocessed robot state ( , , , )Pitch Roll Lfoot Rfoot .  

 

During, each time step t of the training, it will generate a small probability for 

select random action. In this process, the algorithm requires to have sufficient 

exploration to sample enough state space. Otherwise, it acts base on greedy action from 

the current policy. Therefore, most of the time it will take greedy action based on the 

best knowledge of the type of action and desired state. 

 

The next step, acting 
ta , observe reward 

tr , and the next state 
1ts +
. Then, store 

transition 
1 1( , , , )t t t ts a r s+ +

 in replay memory D . Currently, it will train the network 

Policy Net

(Neural Network)

Q-Values

Epsilon GreedyAction

Replay Memory

Optimize (5)

Target Net

(Neural Network)

Rewards or 

Penalty

Update (4)

State

Environment

• IMU Pitch

• IMU Roll

• Left Foot Torque

• Right Foot Torque
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meanwhile sample random mini-batch of transition ( , , , ')s a r s  from D  and perform 

gradient descent step. So, these are full training loop and continuously drag the object 

in the Gazebo simulator and also sampling minibatch using experience replay to update 

Q-network weight  . 

 

Algorithm 3: Deep Q-Learning with Experience Replay 

1. Initialize THORMANG-Wolf PPC & MPC modules 

2. Initialize replay memory D  to capacity N  

3. Initialize action-value function Q  with random weights   

4. Initialize target action-value function Q̂ with weights  − =  

5. For episode = 1, M do  

6.    Initialize sequence  1 1s x=  and preprocessed sequence ( )1 1s =  

7.    For 1t = , T  do 

8.           With probability   select a random action 
ta  

9.         Otherwise select argmax ( ( ), ; )t a ta Q s a =  

10.           Execute action 
ta  in the emulator and observe reward 

tr and state 
1ts +

 

11.         Set 
1 1, ,t t t ts s a x+ +=  and preprocess 

1 1( )t ts + +=  

12.         Store transition 
1( , , , )t t t ta r  +

 in D  

13.         Sample random minibatch of transitions 
1( , , , )j j j ja r  +

 from D  

14.         Set 

' 1

if episode terminates at step j+1

ˆ otherwisemax ( , '; )

j

j

j a j

r
y

r Q a   −

+

  
=  

+  

 

15.         Perform a gradient descent step on 
2( ( , ; ))j j jy Q a −  for the network   

              parameters   

16.         Every C step reset Q̂ Q=  

17.   End For 

18. End For 
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Chapter 4: Experimental Result 

 

 

As mentioned in the introduction, the objective of this thesis was divided into 

robot vision and behavior methods. Therefore, in this chapter, to prove the accuracy of 

the proposed methods first, we describe the experimental setup. Then we conducted and 

evaluated proposed DL algorithms into robot vision and behavior sections. To this end, 

in the robot vision, first, we show experiments on 3D object classification, where the 

accuracy of the proposed TCVN model are compared to classified 4 types of a 3D object. 

Second, we show experiments of the floor detection on three different surfaces to show 

the performance of the proposed lightweight Tiny-YOLACT (real-time instance 

segmentation model). 

 

Accordingly, in the robot behavior, first, we show an evaluation of the simulation 

result, where the training result of the proposed DQL-COB algorithm is compared in 

two scenarios. Hence, in one scenario we use IMU along with foot Pressure (F/T) sensor, 

in the second scenario we just use IMU data as learning algorithm input. Second, we 

show an empirical evaluation of the proposed DQL-COB algorithm on the 

THORMANG-WOLF robot. In this experiment, we demonstrate for the first time, a 

novel implementation of the deep reinforcement learning method that utilizing training 

results in simulation to a real humanoid robot for solving the MLHO problems. 

 

As far as we know to the best of our knowledge, the DQL-COB algorithm solves 

for the first time in this MLHO problem. Therefore, we evaluated two types of 

experiments on three types of surfaces with eight different objects. In these experiments, 

there are two schemes of data inputs (the same as the simulation) are compared. Finally, 

it is worth mentioning that the robustness of the walking controller is not being analyzed 

because designing walking control is not the focus of this thesis. 
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4.1. Experimental Setup 

To evaluate the proposed method, we implemented, conducted, and validated 

different experiments on the THORMANG-Wolf robot (section 3.1). The hierarchical 

method consists of three proposed algorithms including the TCVN model, Tiny-

YOLACT model, and DQL-COB algorithm. The entire code was implemented in the 

Python programming language. In this regard, the standard python open-source neural-

network libraries Keras 9  and machine learning libraries PyTorch 10  were used to 

implement the deep learning models on the proposed methods.  

Our experiments are conducted on the common objects and surfaces available in 

human daily life. Table 4-1 and Table 4-5 are presented the experimental surfaces and 

objects respectively. 

 

Table 4-1 Experimental surfaces. 

No. Surface 

1. Plywood 

2. Green Carpet 

3. Tile 

 

Table 4-2 Experimental objects. 

No. Object Type Weight 

1. Default (No Object) 0 Kg 

2. Office Chair 12.3 Kg 

3. Office Chair with Load 33.5 Kg 

4. Foot Chair 1.3 Kg 

5. Small suitcase11 6.2 Kg 

6. Small suitcase with Load 26.2 Kg 

7. Big Suitcase12 18.6 Kg 

8. Big Suitcase with Human 84.6 Kg 

 

As shown in Table 4-2, the overall 8 objects are a set of collections from a few 

similar objects with different loads that are invisible in 3D object visual. Therefore, in 

the conducted experiments for the 3D object classification, there are only 4 objects 

selected to represent those 8 objects.  

 
9 https://keras.io/ 
10 https://pytorch.org/ 
11 https://www.pelican.com/us/en/product/cases/carry-on-case/protector/1510 
12 https://www.pelican.com/us/en/product/cases/cube-case/protector/0370 
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Moreover, in the conducted walking for the dragging task, the robot is required 

to walk in a straight-line trajectory with a backward direction for 2 meters. Therefore, 

the configurations of the foot-step generator for walking are shown in Table 4-3. 

 

Table 4-3 Foot-steps parameter. 

Parameter Value 

Step Number 12 

Step Time 1.0 s 

Step Length 0.1 m 

Side Step Length 0.05 m 

Step angle degree 5 deg 

 

Generally, the whole training process of the three proposed algorithms are trained 

on a single computer. The details of the deep-learning computer are shown in Table 4-5. 

Therefore, the proposed approaches are tested on the OPC (a laptop to operate the 

THORMANG-Wolf robot). In this situation, OPC is used for running the inference of 

those trained models and integrating it into the THORMANG-Wolf robot. Table 4-5 

presented the details of laptop hardware (OPC) used in this whole evaluation test. 

 

Table 4-4 Deep-learning computer hardware specifications. 

Name Information 

Processor Intel Core i7-8700H (8th Gen) / 3.2 Ghz 

Graphic NVIDIA GeForce GTX 1080Ti / 11 GB 

Memory / Type 32 GB / DDR4 / 2666 Mhz 

Storage 240 GB 2.5in SATA SSD 

 

Table 4-5 OPC (laptop) hardware specifications. 

Name Information 

Processor Intel Core i7-8750H (8th Gen) / 2.2 Ghz 

Graphic NVIDIA GeForce GTX 1060 / 6 GB 

Memory / Type 16 GB / DDR4 / 2666 Mhz 

Storage 256 GB NVMe PCIe Gen3 

 

To evaluate the performance of the 3D object classifier of the TCVN model, the 

statistical table called confusion matrix is utilized to draw the error of prediction in the 

test dataset, in which the true values are known. Moreover, to evaluate the Tiny-

YOLACT model performance on floor detection, the mean Average Precision (mAP) 
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value is used as the model benchmark during training. Additionally, frame per sec (fps) 

rate is utilized to evaluate the speed of the models in terms of video processing times. 

Also, to evaluate the robustness of the DQL-COB algorithm, the error in this experiment 

was based on robot traveled distance and stability. Therefore, error values were 

calculated by Euclidean distance of robot final position and related to the starting 

position tracked by a global camera with the ArUco marker attached on top of the robot. 

 

 

4.2. Experimental Result for Robot Vision 

The evaluation results of the robot vision-based deep learning methods are 

described in this section. Moreover, all data used in this evaluation are captured 

manually using the THORMANG-Wolf robot’s webcam and LiDAR scanner.  

 

4.2.1. 3D Object Classification Result 

In this subsection, collected 1200 data of 4 objects that are illustrated in Figure 

4-1. Each data is labeled according to the object's name. Then, the model's performance 

was compared using VoxNet [52], V-CNN1 [53], and TCVN on the collected dataset. 

Likewise, an object classification task, the last output layer of VoxNet and V-CNN1 

were modified to follow the number of objects in this dataset.  

 

 
(a) Big Suitcase 

 
(b) Office Chair 

 
(c) Foot chair 

 
(d) Small Suitcase 

 

Figure 4-1 The 4 types of the 3D object after voxel grid filter. 

 

Figure 4-2 presented the evaluation of each model during training. The key 

performance to evaluate these models are based on loss and accuracy value. Therefore, 

an interpretation of loss value is based on how bad the model is doing in these two sets 

prediction after every epoch iteration. Hence, accuracy is a number indicating how good 

 



58 
 

was the model's predicted on the validation test compared to the ground-truth data. 

Whereas, a key factor for measuring rank of loss value is by the lowest value, so the 

model with the lowest value rating, means that the best it is. Conversely, the highest 

value category is used for evaluating the rating of the model’s accuracy. As a result, 

models with the highest accuracy means the better it is. 

 
(a) Validation loss scores 

 
(b) Validation accuracy scores 

Figure 4-2 The comparison of TCVN model performances during training. 

 

The summarized ranks of each model presented in Figure 4-2 are described 

respectively. (i) Figure 4-2(a) - loss scores, it presented that loss values for all models 

were decreasing during training. Therefore, the poorest performance was shown on the 

VCNN1 model that achieved the lowest error value on (0.5). Next, followed by the 

VoxNet model with the best (minimum) value on (0.4). Although there were 

overlapping performances drawn by VoxNet and TCVN model, the proposed model 

achieves the lowest loss as it goes down to (0.35). (ii) Figure 4-2(b) – accuracy scores, 

the rank proof on the result drawn in the loss value graph, where the TCVN model 

achieved the highest accuracy value on 90% accuracy of all validation data. Meanwhile, 

the VoxNet model only produces 87% accuracy and the VCNN1 model reaches the 

plateau on 86% accuracy.  

 

Generally, the proposed TCVN model’s performance is superior in terms of both 

accuracy and loss value. To clarify, the ranking results described above, a drawn 

confusion matrix in Figure 4-3 shows the performance result on every model of the 

validation data. Therefore, according to 1200 data that have been collected, it split into 
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33% for the validation data and 77% for the training data. In Figure 4-3, a total of 396 

validation data were used to draw the confusion matrix for each model. Additionally, 

the blue color information of the confusion matrix is separated into two. (i) The darker 

blue color represents the correct predicted number of true positive and true negative in 

the validation data. (ii) The lighter blue color shows the incorrect predicted data, which 

known as a false positive and false negative. Furthermore, the TCVN model outperforms 

both of the models, indicating the importance of network depth and 3D convolution 

layer on the 3D data. 

 

 
(a) VCNN1 

 
(b) VoxNet 

 
(c) TCVN 

Figure 4-3 The comparison of the TCVN model in a confusion matrix of the validation data. 

 

4.2.2. Floor Detection Result 

In this subsection, the floor detection algorithm is evaluated using the original 

YOLACT model and the proposed Tiny-YOLACT model on the custom floor images 

dataset. Therefore, the custom dataset is consisting of 850 train and 400 test images. 

Moreover, the collected train images were captured using the robot webcam. Whereas, 
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the test images were acquired from an external webcam with a side view of the 

experimental floor.  

 

The training process is conducted with a batch size of 8 on the training computer 

(see Table 4-4). There were four models compared in these experiments, which are 

YOLACT with ResNet-18, 34, 50, and 101 as the backbone network for each model. 

Moreover, the pre-trained ResNet models on the ImageNet dataset were utilized from 

the PyTorch server13. As a result, the transfer learning method from the pre-trained 

weights was used to speed up the training process. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 4-4 Example results of floor detection using the Tiny-YOLACT model. 

Note: (a, d, g) plywood, (b, e, h) green carpet, and (e, f, i) tile. 

 
13 https://pytorch.org/hub/pytorch_vision_resnet/ 
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With looking at Figure 4-4, the result of the proposed Tiny-YOLACT model 

shows that the algorithm successful to segment the mask on each type of floor. Also, the 

mask result is smoother compared to other instance segmentation models. The reason is 

due to advantages of the “Proto Net” that produce temporal stability, although the model 

predicts different boxes cross frames, it’s not affected the prototypes and even resulting 

in a much more temporary stable mask [46]. 

 

 
(a) 

 
(b) 

Figure 4-5 Result of validation mAP and FPS using different ResNet backbone. 

 

Figure 4-5(a) presented the mAP value during the training of each model on 

validation data. It can be seen that every ResNet model converges with an average of 

more than 25 mAP on validation data. Therefore, due to the proposed Tiny-YOLACT 

model with ResNet-18 has a smaller number of parameters, the model achieves the 

fastest in terms of training time. Whereas, the model achieved 34.16 mAP on the 

validation data of the custom dataset within 1500 epoch. 

 

In addition, Figure 4-5(b) shows the video processing time of all trained models. 

This shows that the YOLACT model can perform real-time instance segmentation in 

moderate GPU with specification similar to Table 4-5. Overall, the models were 

attaining more than 10 fps. In this case, the proposed Tiny-YOLACT model also 

obtained the fastest video processing times with an average of 29.56 fps. 
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4.3. Experimental Results for Robot Behavior 

The performance of the proposed dragging object learning framework is 

described in this section. The walking balance parameter of offset 
XCoB  was learned 

using the ROS gazebo simulator. Then, the learned DQN algorithm will be used directly 

in the real THORMANG-Wolf robot.  

 

4.3.1. DQL-COB Training Results 

The experiment scenario was on straight walking backward with foot step 

parameter shown in Table 4-3 and at the same time the robot is also grasping the object. 

This is illustrated in Figure 4-6, with denoted as white and red lines as the start and 

finish line for the dragging distance. Hence, the large size and heavy objects are 

simulated by using a 3D CAD big and heavy chair object. Moreover, the mass of an 

object is unknown to the robot. Therefore, as described in the introduction, the aim of 

this project is a robot learn by trial and error to drag the object (model-free RL). 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

Figure 4-6 Snapshot of dragging in the Gazebo simulator. 

 

One of the challenges in the machine-learning approached is selecting the correct 

hyperparameters for training the DNN. Therefore, a list of hyperparameters values used 

in this DQN algorithm is shown in Table 4-6. 
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Table 4-6 List of hyperparameters and values of the DQN 

Hyperparameter Value Description 

episode step 2000 number of sequences of steps set. 

minibatch size 64 
number of training cases over which each SGD 

update is computed. 

replay memory size 50000 

RMS optimizer updates are sampled from 

experienced by the agent that is given as input to 

the Q network. 

target network 

update frequency 
100 

the frequency number of parameter update (this 

corresponds to parameter C from Algorithm 3) 

discount factor 1 
discount factor gamma used in the Q-learning 

update. 

learning rate 0.01 the learning rate used by the RMS optimizer. 

initial exploration 0.9 initial value of   in greedy −  exploration. 

final exploration 0.05 final value of   in greedy −  exploration. 

 

 

(a) Reward value w/o using F/T sensor. 

 

(b) Reward value with using F/T sensor. 

Figure 4-7 Comparison of accumulated reward during training. 

 

(a) Error distance w/o using F/T sensor. 

 

(b) Error distance with using F/T sensor. 

Figure 4-8 Comparison of Euclidean error during training. 
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Based on the proposed learning framework, two different sets of states are 

compared to evaluate the efficiency learning process. Those two states are based on the 

IMU pitch and roll axis, with and without using the F/T sensor. For this purpose, there 

were a total of 2000 episodes executed to learn the 
XCoB  walk balance parameter. 

Additionally, it took approximately 14 hours of training time to complete 2000 episodes 

in the ROS gazebo simulator. 

 

Figure 4-7 shows the reward at each episode according to the DQN method. The 

plateau green curve means that the sub-optimal offset 
XCoB  with maximal reward was 

acquired in around 1000 episodes. Meanwhile, Figure 4-8 shows the Euclidean error 

that the robot reached the target line or not. This means the robot required to drag for a 

2-meter distance to reach the finish (red line) from the start (white line). Therefore, the 

summary results of these comparison draw on the proposed DQL-COB with only using 

IMU sensors obtained maximum accumulated reward on 3.6 scalar value and reach 

minimum error 0.4-meter. On the other hand, our proposed DQL-COB with having F/T 

sensors as additional state is superior in terms of both accumulated reward and Euclidean 

error value. During training, we reported the highest accumulated reward of 5.8 scalar 

value and reached the best minimum error on 0.1 meter.  

 

 
(a) 

 
(b) 

  
(c) 

 
(d) 

Figure 4-9 Snapshot during training in the Gazebo simulator. 
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Correspondingly, the graph result presented in Figure 4-7 and Figure 4-8 is re-

illustrated in Figure 4-9. Whereas, the robot is having close behavior during training 

progress with and without using the F/T sensor. Therefore, to generalize the learning 

process, the phases are demonstrated with four-stage in Figure 4-9. First, in episode 1 

until 500, due to the high probability of exploration, the robots keep falling forward in 

the starting stage. Second, during episode 500 to 750, the robot starts having prior 

knowledge with shows on the robot that can drag up to half of the target distance. Then, 

in the third stage (episode 750 till 1000), the robot is capable to drag until the target 

distance. However, in this phase, the performance is counted as semi-successful. 

Because the robot still falls in the finish line. Finally, after episode 1000 until 2000, the 

robot is qualified to drag the object. As a rule of exploitation in prior knowledge, the 

robot accomplishes dragging objects till the target line without falling.  

 

 
 (a) Normalized IMU state (Pitch & Roll). 

 
(b) Binarized foots state (1:on ground; 0:air) 

 
(c) Offset value action of the Center of Body X-axis. 

Figure 4-10 Recorded (states, actions) pair by the learned DQN during testing. 

 

Based on results shown in Figure 4-7 and Figure 4-8, the proposed learning 

framework outperforms having an F/T sensor along with the IMU sensor on the pitch 

and roll axis on the environment state. Then, the learned DQL-COB model was tested 
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again in the Gazebo simulator. Therefore, we recorded the state and action ( , )s a  pair is 

illustrated in Figure 4-10. The learned robot show tends to decrease the offset value 

XCoB  to maintain the IMU pitch on the center range. In other words, maintaining the 

balanced posture of the robot also means that the algorithm successfully keeps track of 

the CoM of the robot. As a result, the robot capable to drag heavy and large objects 

without falling and it shown in the IMU pitch graph [see Figure 4-10(a)]. This behavior 

shows the robot act identically as a normal human. Whereas, a person tends to moves 

the torso backward during dragging for acquires large force. 

 

4.3.2. DQL-COB Empirical Evaluation Result 

This section implements the novel DQL-COB algorithm for the first time that 

uses training results in simulation and applied to the real adult-sized THORMANG-wolf 

robot for solving the MLHO problems. To evaluate the robustness of the learned DQL-

COB algorithm, those mentioned objects and surfaces shown in Table 4-1 and Table 4-2 

were illustrated again in Figure 4-11 until Figure 4-13. 

 

 
 (a) 

 
(b) 

 
(c) 

 
(d) 

 
 (e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4-11 Snapshots testing on plywood surfaces. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 (e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4-12 Snapshots testing on green carpet surfaces. 

 

 
 (a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4-13 Snapshots testing on tile surfaces. 
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 Based on the simulation, the DQL-COB algorithm model was trained on two 

different sets of states. Therefore, in the evaluation test to a real robot, the tests were 

conducted with 10 trial experiments on each object and each surface with and without 

using the F/T sensor. As a result, the total number of tests that have done was 480 tests, 

which are: 3 surfaces x 8 different object x 10 trial x 2 with and without using the F/T 

sensor. Table 4-7 shows the numbers of success rate in all experimental results and the 

video is available at (https://youtu.be/pGy5bJm3J_E). The details of each success rate 

in Table 4-7 means that the robot accomplished the dragging with Euclidean distance 

more than equal target distance without falling. 

 

Table 4-7 Summary and comparison of the success rate result for all experiments. 

Note: the term “w/o” indicating abbreviation of without. 

Object 
Plywood Carpet Tile 

with F/T 

Sensor 

w/o F/T 

Sensor 

with F/T 

Sensor 

w/o F/T 

Sensor 

with F/T 

Sensor 

w/o F/T 

Sensor 

Default 

 (No Object) 
100% 100% 100% 100% 100% 100% 

Office Chair 100% 100% 90% 100% 100% 90% 

Office Chair  

with Load 
100% 100% 100% 100% 100% 70% 

Foot Chair 100% 100% 100% 100% 100% 100% 

Small Suitcase 100% 100% 100% 100% 100% 100% 

Small Suitcase 

with Load 
100% 100% 100% 90% 90% 60% 

Big Suitcase 100% 100% 100% 100% 100% 100% 

Big Suitcase  

with Human 
90% 0% 0% 0% 60% 0% 

 

As shown in Figure 4-14, the success rate of dragging all objects for the entire 

experiment was having a slight difference in the performances. Therefore, the total 

percentage of success rate using the learned robot with having the F/T sensor is 92.91%. 

Comparatively, the robot successful rate without using the F/T sensor is 83.75%. 

Therefore, to analyze the difference between the learned robot on two different sets of 

states, the recorded ( , )s a  pairs are compared.  
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Figure 4-14 The success rate of dragging all objects per each surface. 

 

Additionally, the evaluation number of footsteps are kept in the same with the 

simulation. This means that the target distance for straight backward walking is still 

same 2 meters. Although with the absence of the F/T sensor, the robot still could drag 

most of the experimental objects. This shows in Figure 4-15, the captured ( , )s a  pairs 

during dragging a small suitcase with the load as the evaluation sample.  

 

 
(a) IMU States (b) Offset XCOB  

 
(c) Trajectory and Euclidean distance during dragging 

Figure 4-15 Recorded (states, actions) pair without using the F/T sensor. 
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Generally, an example result of the captured behaviors of ( , )s a  pairs on the 

proposed DQL-COB algorithm without using the F/T sensor in Figure 4-15 shows a 

general trend for dragging other types of objects. The actions taken by the robot appear 

to be sluggish or insensitive toward the dynamic of states. For this reason, the 

shortcoming was on dragging the massive objects (big suitcase with a human), that robot 

fails to drag it. 

 

On the contrary, the performance of the learned agent with having the F/T sensor 

is more robust. This proves on the robot that capable to drag a big suitcase (18.6kg) with 

an adult human (66kg) seated on top of it. The proposed learning framework shows the 

capability of a THORMANG-Wolf robot to drag an object with a load 84.6kg (double 

of its weight). As shown in Figure 4-16,  the recorded ( , )s a pairs of the robot using the 

F/T sensors during dragging a massive object. This is showing the benefit of using F/T 

sensors as the additional features to the DQL-COB algorithm, that the actions taken by 

the robot are more stable. 

 

As a result, the experiments result clearly show that the proposed hierarchical 

method for dragging objects which implemented based on deep neural networks can 

recognize and perform superior results with a very high success rate. Although the state 

of sensor values of real robots is slightly different from simulation, it allows having 

better generalization for unknown states. For this reason, the proposed DQL-COB 

algorithm can generalize more features based on experience environment and action. 

 

 
(a) IMU States 

 
(b) Foot States 
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(c) Offset XCOB  

 
 

(d) Trajectory and Euclidean distance during 

dragging 

Figure 4-16 Recorded (states, actions) pair using the F/T sensor. 

 

To answer, the failure condition in Table 4-7, the analysis of sample conditions 

is illustrated in Figure 4-17 and Figure 4-18. Therefore, as illustrated in Figure 4-17, the 

robot was failed to drag an empty small suitcase at the finish line. The main reason is 

the behavior of the fluctuating offset 
XCoB . However, this problem only happened on 

the learned agent without using the F/T sensors.  

 

 
(a) 

 
(b) 

Figure 4-17 Example of a failure condition in dragging an empty small suitcase. 

 

One other thing of the highest failure rate is shows on dragging a big suitcase 

with a human on a green carpet surface. Wherefore, the initial value of XCoB  parameter 

of the robot is -0.015. This means the robot has a straight torso posture before dragging 

the object [see Figure 3-20(b)]. Also, the green carpet surface has a smaller coefficient 

of friction. As a result, the robot has a high probability to fall forward in beginning for 

dragging a high load object. 
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(a) 

 
(b) 

Figure 4-18 Example of a failure condition in dragging a big suitcase with a human. 

 

For all these reasons, we conduct another experiment with a pre-defined initial offset 

of -0.08 
XCoB . Wherefore, the designated initial offset implies the robot postures with 

an initial pose that slightly backward. Then, we applied the proposed DQL-COB by 

using the F/T sensor. As a result, the robot could successfully drag an object and tackle 

the failure condition described in Figure 4-18. Moreover, the recorded ( , )s a pairs of this 

experiment illustrated in Figure 4-19. 

 

 
(a) 

 
(b) 

Figure 4-19 The pre-defined CoB-X to dragging a big suitcase with a human. 
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Chapter 5: Closing 

  

5.1. Conclusion 

In this thesis, presented a hierarchical deep learning method in which we used 

adult-sized biped humanoid robot THORMANG-Wolf to drag large size and heavy 

object. The main objective of the proposed method was to drag different objects on 

various flat surfaces through the learning-based method. The validation of this 

experiment was tested to drags several common objects and surfaces available in human 

daily life. To sum up, the learning-based approached in this MLHO problem, it can be 

divided into three different learning system. 

 

First, for object detection, the approach was done using a deep learning method 

on 3D object classification. The 3D data were acquired using a point cloud from the 

robot’s LiDAR scanner. A pre-process Euclidean distance-based filter and voxelization 

algorithm to down-sample the point cloud data into a fixed size 30×30×30 volumetric 

occupancy grid. In brief, the proposed TCVN model that based VoxNet [52] and V-

CNN1 [53] achieved a 90% accuracy in real-time. 

 

 Second, for the floor detection, the approach was done using a deep learning 

method on real-time instance segmentation. We proposed a model based on the original 

YOLACT model [46] that is modified on the backbone network using the ResNet-18 

and called this customized model as Tiny-YOLACT. For the training process, a custom 

dataset (floor images) was acquired from the robot’s webcam with a COCO format. This 

custom model achieved a 34.16 mAP on validation data with an average of 29.56 fps on 

standard NVIDIA GTX-1060 GPU.  

 

Third, for the deep reinforcement learning method, it was done using the Deep 

Q-Learning method to produce the offset parameter 
XCoB  during dragging. We 

proposed a DQL-COB algorithm with the environment and the training process was 

done in the ROS-Gazebo simulator. It took approximately 20 hours of training time on 

a single deep-learning computer (see Table 4-4) to complete 2000 episodes for the robot 
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to learned and solved the MLHO problem. In the experiments, the learned agent from 

the simulator was directly tested to a real robot with a success rate percentage of 92.91% 

using the F/T sensor and 83.75% without using F/T sensors. 

 

 Overall, the sequence of those multi learning-based approached was done 

sequentially. Briefly, a robot scan objects with LiDAR and utilized the TCVN model to 

access the pre-recorded motion on grasping an object. Afterward, the floor detection 

result from Tiny-YOLACT was used to select a coefficient offset value on offsetting 

XCoB . Whereas, the DQL-COB algorithm acted as 
XCoB  an offset manager based on 

the IMU and F/T sensors. As a result, the offset 
XCoB is implemented to keep tracking 

with the robot’s center of mass, that robot can keep balance with maintaining the ZMP 

in support polygon.  

  

 

5.2. Future Work 

In future work, the plan is removing instance segmentation of floor detection part 

with extending to a deep reinforcement learning algorithm that adding a raw image from 

the robot camera as an additional state. Therefore, the agent can differentiate the offset 

value 
XCoB  based on types of surfaces directly and act more robustly. Also, 

implementing the dynamic inverse kinematic grasping point technique based on LiDAR 

point cloud data should be further studied. On the whole, broaden the dragging large 

and heavy object into pulling and pushing large and heavy objects as well. 
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